	GPLUS E	DUCATION			
Tin	Date : Time : PHYSICS Marks :				
1-101		PERTIES OF FLUI	DS		
	Single Corre	ect Answer Type			
1.	A thin uniform cylindrical shell, closed at both ends, is partially filled with water. It is floating vertically in water in half-submerged state. If ρ_c is the relative density of the material of the shell with respect to water then the correct statement is that the shell is				
	a) More than half filled if $ ho_c$ is less then 0.5	b) More than half filled	if $ ho_c$ is less then 1.0		
	c) Half filled if $ ho_c$ is less then 0.5	d) Less than half filled i	f $ ho_c$ is less then 0.5		
2.	A container with square base of side <i>a</i> hight <i>H</i> with a liquid. A hole is made at a depth <i>h</i> from the free surface of water. With what acceleration the container must be accelerated, so that the water does not come out?				
	a) G b) $\frac{g}{2}$	c) $\frac{2gH}{2}$	d) $\frac{2gh}{g}$		
3.	From a steel wire of density ρ is suspended a bra	ss block of density ρ_B . The ex	ktension of steel wire comes		
	to l . If the brass block is now fully immersed in a l/l' will be				
	a) $\frac{\rho_B - \rho}{\rho_L - \rho}$ b) $\frac{\rho_L}{\rho_R - \rho_L}$	c) $\frac{\rho_B - \rho_L}{\rho_B}$	d) $\frac{\rho_B}{\rho_B - \rho_L}$		
4.	$p_L - p$ $p_B - p_L$ The pressure on a swimmer 20 m below the surface		$ ho_B - ho_L$		
т.	a) 1.0 atm b) 2.0 atm	c) 2.5 atm	d) 3.0 atm		
5.	Bernoulli's principle is not involved in the working		a) 510 acm		
0.	a) Movement of spinning ball	b) Carburetor of autom	obile		
	c) Blades of a kitchen mixer	d) Heart attack			
6.	A soap bubble A radius 0.03 and another bubble	<i>B</i> of radius 0.04 m are broug	ht together so that the		
	combined bubble has a common interface of radi	us r , then the value of r is	_		
	a) 0.24 m b) 0.48 m	c) 0.12 m	d) None of these		
7.	A large tank is filled with water to a height H . A s	mall hole is made at the base	e of the tank. It takes T_1 time		
	to decrease the height of water to $\frac{H}{\eta}(\eta > 1)$: and	it takes T_2 time to take out the	he rest of water. If $T_1 = T_2$,		
	then the value of η is				
	a) 2 b) 3	c) 4	d) $2\sqrt{2}$		
8.	A piece of wax weighs 18.03 g in air. A piece of m	•	•		
	wax and both together weigh 15.23 g in water. The	•	•		
	a) $\frac{18.03}{17.03}$ b) $\frac{17.03}{18.03}$	c) $\frac{18.03}{19.83}$	d) $\frac{15.03}{17.03}$		
9.	A small sphere of mass m is dropped from a grea	t height. After it has fallen 10	00 m, it has attained its		
	terminal velocity and continues to fall at that spe	ed. The work done by air fric	ction against the sphere		
	during the first $100 m$ of fall is				
	a) Greater than the work done by air friction in the				
	b) Less than the work done by air friction in the s	second 100 m			
	c) Equal to 100 mg				
	d) Greater than 100 mg	C			
10.	If a drop of water is broken in to smaller drops th	••			
	a) Increases	b) Decreases	l on donners		
	c) Remains unchanged	d) Can increases as wel	i as decreases		

- 11. A boat carrying a number of large stones is floating in a water tank. What would happen to the water level, if a few stones are unloaded into water?
 - a) Rises
 - b) Falls
 - c) Remains unchanged
 - d) Rises till half the number of stones are unloaded and the begins to fall
- 12. An incompressible liquid flows through a horizontal tube as shown in the following fig. Then the velocity vof the fluid is

- a) $3.0 \, m/s$
- b) $1.5 \, m/s$
- c) $1.0 \, m/s$
- d) $2.25 \, m/s$
- 13. Determine the energy stored in the surface of a soap bubble of radius 2.1 cm if its surface tension is $4.5 \times$ 10^{-2} Nm^{-1} .
 - a) 8 mJ

- b) 2.46 mJ
- c) 4.93×10^{-4} J
- d) None of these
- 14. At a given place where acceleration due to gravity is $g \text{ ms}^{-2}$, a sphere of lead of density $d \text{ kgm}^{-3}$ is gently released in a column of liquid of density ρ kg m⁻³. If $d > \rho$, the sphere will
 - a) Fall vertically with an acceleration $g \text{ ms}^{-2}$
- b) Fall vertically with no acceleration
- c) Fall vertically with an acceleration $g\left(\frac{d-\rho}{d}\right)$ d) Fall vertically with an acceleration $g\left(\frac{\rho}{d}\right)$
- 15. If the velocity head of a stream of water is equal to 10 cm, then its speed of flow is $(g = 10 \text{ ms}^{-2})$
 - a) 10 ms^{-1}
- b) 140 ms⁻¹
- c) 1.4 ms^{-1}
- 16. A vertical glass capillary tube, open at both ends, contains some water. Which of the following shapes may be taken by the water in the tube?

- 17. If pressure at half the depth of a lake is equal to 2/3 pressure at the bottom of the lake then what is depth of the lake
 - a) 10 m

b) 20 m

c) 60 m

- 18. A ball is made of a material of density ρ where $\rho_{oil} < \rho < \rho_{water}$ with ρ_{oil} and ρ_{water} respectively. The oil and water are immiscible. If the above ball is in equilibrium in mixture of this oil and water, which of the following pictures represents its equilibrium position?

- 19. For a liquid which is rising in a capillary, the angle of contact is
 - a) Obtuse
- b) 180°

- d) 90°
- 20. The fraction of a floating object of volume V_0 and density d_0 above the surface of a liquid of density d will he

21.	The relative velocity of two parallel layers of water layers is 0.1 cm, then velocity gradient will be	er is 8 cms^{-1} . If the pe	rpendicular distance between the
	a) $40 \mathrm{s}^{-1}$ b) $50 \mathrm{s}^{-1}$	c) $60 s^{-1}$	d) 80 s^{-1}
22.	An inverted bell lying at the bottom of a lake 47.6	m deep has $50 cm^3$ of	fair trapped in it. The ball is
	brought to the surface of the lake. The volume of t	he trapped air will be	(atmospheric pressure = $70 cm$ of
	Hg and density of $Hg = 13.6 \ g/cm^3$)	••	•
	a) $350 cm^3$ b) $300 cm^3$	c) $250 cm^3$	d) $22 cm^3$
23.	Eight drops of a density ρ and each of radius a are	falling through air wi	th a constant velocity 375 cm s ⁻¹ .
	When the eight drops coalesce to from a single dro		
		c) 0.75×10^{-2} ms	
24.	An aeroplane of mass 3×10^4 kg and total wing an	,	,
	difference in pressure between the upper and low		_
	a) 2.5 b) 5.0	c) 10.0	d) 12.5
25	In which one of the following cases will the liquid	•	,
25.	a) Liquid of high viscosity and high density flowin	= =	
	b) Liquid of high viscosity and low density flowing	0	
	c) Liquid of low viscosity and low density flowing		
	d) Liquid of low viscosity and high density flowing		
26	A horizontal pipe of non-uniform cross-section all		_
20.	* *		•
	when pressure is 50 kPa at a point. If the velocity	of flow has to be 2 ms	- at some other point, the
	pressure at that point should be) 40 5 1 D	D 24 25 LD
27	a) 50 kPa b) 100 kPa	c) 48.5 kPa	d) 24.25 kPa
27.	9		ie top of a nill. Ratio of density of
	mercury to that of air is 10 ⁴ . The height of the hill		1) 770
	a) 250 <i>m</i> b) 2.5 <i>km</i>	c) 1.25 km	d) 750 <i>m</i>
28.	In the figure, the velocity V_3 will be		
	$\frac{A_2 = 0.2m^2}{V_1 = 4ms^{-1} \qquad V_2 = 2ms^{-1}}$	CATION	
	$V_1 = 4ms^{-1}$ $V_2 = 2ms^{-1}$	CHILDIA	
	$A_1=0.2m^2$		
	\\		
	$A_3=0.4m^2 \setminus {}^{V}_3 \setminus$		_
	a) Zero b) $4ms^{-1}$	c) $1ms^{-1}$	d) $3ms^{-1}$
29.	With the increase in temperature, the angle of con		
	a) Decreases	b) Increases	
	c) Remains constant	,	reases and sometimes decreases
30.	An air-tight cage with a parrot sitting in it is suspe	ended from the spring	balance. The parrot starts flying.
	The reading of the spring balance will		
	a) Increase b) Decrease	c) Not change	d) Be zero
31.	At critical temperature, the surface tension of a lic	ηuid is	
	a) Zero	b) Infinity	
	c) The same as that at any other temperature	d) Cannot be dete	rmined
32.	A metal plate of area 10^3 cm^2 rests on a layer of o	il <mark>6 mm</mark> Type equation	here. thick. A tangential force of
	10^{-2} N is applied on it to move it with a constant v	velocity of 6 cms $^{-1}$. Th	ne coefficient of viscosity of the
	liquid is		
	a) 0.1 poise b) 0.5 poise	c) 0.7 poise	d) 0.9 poise
33.	If two soap bubble of different radii are connected	l by a tube	
	a) Air flows from the bigger bubble to the smaller	bubble till the sizes b	ecome equal
	h) Air flows from higger hubble to the smaller but		-

d) convex

- c) Air flows from the smaller bubble to the bigger
 d) There is no flow of air
 34. The meniscus of mercury in a capillary glass tube, is
 a) Concave
 b) Plane
- 35. A glass tube 80 cm long and open at both ends is half immersed in mercury. Then the top of the tube is closed and it is taken out of the mercury. A column of mercury 20 cm long then remains in the tube. The atmospheric pressure (in cm of Hg) is

c) Cylindrical

- a) 90 b) 75 c) 60 d) 45 36. A triangular lamina of area A and height h is immersed in a liquid of density ρ in a vertical plane with its
- base on the surface of the liquid. The thrust on the lamina is

 a) $\frac{1}{2}A\rho gh$ b) $\frac{1}{3}A\rho gh$ c) $\frac{1}{6}A\rho gh$ d) $\frac{2}{3}A\rho gh$
- 37. A small spherical ball of steel falls through a viscous medium with terminal velocity v. If a ball of twice the radius of the first one but of the same mass is dropped through the same method, it will fall with a terminal velocity (neglect buoyancy)
 - a) $\frac{v}{2}$ b) $\frac{v}{\sqrt{2}}$ c) v
- 38. A jar shown in figure is filled with a liquid of density ρ . The jar is placed in vacuum. Cross-section of the jar is circular and base is having a radius R. The force exerted by the liquid column on the base of the jar is

a) $\rho g(a+b+c)\pi R^2$

- b) Less than ρ g(a + b + c) πR^2
- c) Greater than ρ g(a + b + c) πR^2
- d) $2\rho g(a + b + c)\pi R^2$
- 39. A sniper fires a rifle bullet into a gasoline tank making a hole $53.0 \, m$ below the surface of gasoline. The tank was sealed at $3.10 \, atm$. The stored gasoline has a density of $660 \, kgm^{-3}$. The velocity with which gasoline begins to shoot out of the hole is
 - a) $27.8ms^{-1}$
- b) $41.0ms^{-1}$
- c) $9.6ms^{-1}$
- d) $19.7ms^{-1}$
- 40. The work done in increasing the size of a rectangular soap film with dimensions 8cm \times 3.75 cm to 10cm \times 6cm is 2 \times 10⁻⁴ J. The surface tension of the film in Nm^{-1} is
 - a) 1.65×10^{-2}
- b) 3.3×10^{-2}
- c) 6.6×10^{-2}
- d) 8.25×10^{-2}
- 41. Water rises in a capillary tube to a heighth. Choose the false statement regarding rise from the following
 - a) On the surface of Jupiter, height will be less than \boldsymbol{h}
 - b) In a lift, moving up with constant acceleration, height is less than h
 - c) On the surface of the moon, the height is more than \boldsymbol{h}
 - d) In a lift moving down with constant acceleration height is less than \boldsymbol{h}
- 42. If a ball of steel density $\rho=7.8~g~cm^{-3}$) attains a terminal velocity of $10cms^{-1}$ when falling in a tank of water (coefficient of viscosity $\eta_{water}=8.5\times 10^{-4}~Pa-s$) then its terminal velocity in glycerine ($\rho=12~g~cm^{-3}$, $\eta=13.2~Pa-s$) would be nearly
 - a) $1.06 \times 10^{-5} \text{ cms}^{-1}$
- b) $6.25 \times 10^{-4} \text{ cms}^{-1}$
- c) $6.45 \times 10^{-4} \text{ cms}^{-1}$
- d) $1.5 \times 10^{-5} \text{ cms}^{-1}$
- 43. A cylinder containing water upto a height of 25 cm has a hole of cross-section $1/4 cm^2$ in its bottom. It is counterpoised in a balance. What is the initial change in the balancing weight when water begins to flow out

	↑ 25 cm					
	a) Increase of 12.5 gm-w	t	b) Increase of 6.25 gm-w	t		
	c) Decrease of 12.5 gm-w		d) Decrease of 6.25 gm-и			
44.	The height of the dam, in	an hydroelectric power sta				
	power, the mass of water	(in kg) that must fall per s	econd on the blades of the	turbine is		
	a) 10 ⁶	b) 10 ⁵	c) 10^3	d) 10 ⁴		
45.	A water film is formed be	tween two parallel wires of	f 10 cm length. The distanc	e of 0.5 cm between the		
	wires is increased by 1 mm. Which will be the work done?					
	(Surface tension of water	$=72 \text{ Nm}^{-1})$				
	a) 288 erg	b) 144 erg	c) 72 erg	d) 36 erg		
46.				he same uniform speed. The		
	material density of sphere	e 1 and sphere 2 are 8×10	$^3 kg/m^3$ and $11 \times 10^3 kg/m^3$	m^3 respectively. The ratio		
	of their radii is					
	11	11	3	3		
	a) $\frac{11}{8}$	b) $\sqrt{\frac{11}{8}}$	c) $\frac{3}{2}$	d) $\sqrt{\frac{3}{2}}$		
4.77	_	V		1		
47.		ntly dropped into liquid of				
	•	ner sphere of radius 2 <i>R</i> whe	en aroppea into the same i	iquia, will attains its		
	terminal velocity	I-) 2	c) 4v	d) 9 <i>v</i>		
48.	a) v	b) $2v$,	densitites ρ_1 and ρ_2 (in CGS)		
40.	•	L				
		units) are cemented together to form a cylinder of length 2 L . If the combination floats in water with a length $L/2$ above the surface of water and $ ho_1< ho_2$, then				
				d) $a_{r} > 3/4$		
49	A block of steel of size 5 c	b) $\rho_1 < 3/4$ $m \times 5$ $cm \times 5$ cm is weighe	ed in water. If the relative c	lensity of steel is 7 its		
17.	apparent weight is	III X 5 cm X 5 cm is weight	tu iii water, ii tiic relative t	ichisity of steel is 7, its		
		b) $4 \times 4 \times 4 \times 7 gf$	c) $5 \times 5 \times 5 \times 7$ af	d) $4 \times 4 \times 4 \times 6$ af		
50.	A block of aluminium of n	hass 1 ka and volume 3.6 \times	$3.10^{-4}m^3$ is suspended from	m a string and then		
	A block of aluminium of mass $1 kg$ and volume $3.6 \times 10^{-4} m^3$ is suspended from a string and then completely immersed in a container of water. The decrease in tension in the string after immersion is					
	a) 9.8 <i>N</i>	b) 6.2 <i>N</i>	c) 3.6 <i>N</i>	d) 1.0 <i>N</i>		
51.	•	a steel needle sinks becaus	•	,		
	a) Viscosity	b) Surface tension	c) Density	d) None of these		
52.	•	•	•	•		
		A film of water is found between two straight parallel wires of length 10 cm each separated by 0.2 cm. If their separation is increased by 1 mm, while still maintaining their parallelism, how much work will have				
	-	ion of water is 7.2×10^{-2} N				
	a) 7.22×10^{-6} J	b) 1.44×10^{-5} J	c) 2.88×10^{-5} J	d) 5.76×10^{-5} J		
53.	-	ho is immersed in water of d	-			
		r upto which the ball jump		~		
	a) Zero	h) <i>h</i>	$\rho_0 h$	$d \left(\frac{\rho_0}{\rho_0} - 1 \right) h$		
		b) <i>h</i>	c) $\frac{\rho_0 h}{\rho}$	d) $\left(\frac{\rho_0}{\rho} - 1\right)h$		

54. A given shaped glass tube having uniform cross section is filled with water and is mounted on a rotatable shaft as shown in figure. If the tube is rotated with a constant angular velocity ω then

- a) Water levels in both sections A and B go up
- b) Water level in Section A goes up and that in B comes down
- c) Water level in Section A comes down and that in B it goes up
- d) Water levels remains same in both section
- 55. An adulterated sample of milk has density of 1032 kg m⁻³, while pure milk has a density of 1080 kg m⁻³. Then the volume of pure milk in a sample of 10 L of adulterated milk is
 - a) 0.5 L

b) 1.0 L

c) 2.0 L

d) 4.0 L

- 56. Angle of contact of a liquid with a solid depend on
 - a) solid only

b) liquid only

c) both on solid and liquid

- d) orientation of the solid surface in liquid
- 57. The glycerin of density 1.25×10^3 kgm⁻³ is flowing through a conical tube with end radii 0.1 m and 0.04 m respectively. The pressure difference across the ends is 10 Nm⁻². The rate of flow of glycerine through the tube is
 - a) $6.4 \times 10^{-2} \text{ m}^2 \text{s}^{-1}$
- b) $6.4 \times 10^{-4} \,\mathrm{m}^3 \mathrm{s}^{-1}$
- c) $12.8 \times 10^{-2} \text{ m}^3 \text{s}^{-1}$
- d) $12.8 \times 10^3 \text{ m}^3 \text{s}^{-1}$
- 58. Water is flowing through a horizontal pipe of non-uniform cross-section. At the extreme narrow portion of the pipe, the water will have
 - a) Maximum speed and least pressure
- b) Maximum pressure and least speed
- c) Both pressure and speed maximum
- d) Both pressure and speed least
- 59. A river of salty water if flowing with a velocity 2 ms^{-1} . If the density of the water is 1.2 gcc^{-1} , then the kinetic energy of each cubic meter of water is

- a) 2.4 J b) 24 J c) 2.4 Kj d) 4.8 kJ

 60. The cylindrical tube of spray pump has a cross-section of 8 cm², one end of which has 40 fine holes each of area 10^{-8} m². If liquid flows inside the tube with a speed of 0.15 m min⁻¹, the speed with which the liquid is ejected through the hole is
 - a) 50 ms^{-1}
- b) 5 ms^{-1}
- c) 0.05 ms^{-1}
- d) 0.5 ms^{-1}
- 61. A liquid of density ρ is filled in a U-tube is accelerated with an acceleration a so that the height of liquid in its two vertical arms are h_1 and h_2 as shown in the figure. If l is the length of horizontal arm of the tube, the acceleration a is

a) $\frac{g(h_1-h_2)}{2!}$ towards right

b) $\frac{g(h_1-h_2)}{2l}$ towards left d) $\frac{g(h_1-h_2)}{l}$ towards left

c) $\frac{g(h_1-h_2)}{l}$ towards right

- 62. A liquid is allowed into a tube of truncated cone shape. Identify the correct statement from the following.
 - a) The speed is high at the wider end and low at the narrow end
 - b) The speed is low at the wider end and high at the narrow end
 - c) The speed is same at both end in a streamline flow
 - d) The liquid flows with uniform velocity in the tube

63.	A cube floats in water with part is outside the liquid th			ats in liquid with 3/4th
	a) 8/3	b) 2/3	c) 4/3	d) 5/3
64.	-	-	f 3m. The ratio of the cross iquid coming out from the	-sectional area of the orifice orifice is $(g = 10 \mathrm{ms}^{-2})$
	3m 52.5 cm			
			c) $51 \text{ m}^2 \text{s}^{-2}$	
65.		ficient of viscosity neglect	ing the density of air, will b	$e (g = 10 \text{ ms}^{-2})$
	a) 23.2 units	b) 83.5 units	c) 334 units	d) 167 units
66.	A water tank, open to the a	atmosphere, has a leak in i	t, in the form of a circular h	ole, located at a height h
	below the open surface of	water. The velocity of the	water coming out of the ho	le is
	a) $\sqrt{gh/2}$	b) \sqrt{gh}	c) $\sqrt{2gh}$	d) $2\sqrt{gh}$
67.	A frame made of metallic v	vire enclosing a surface ar	ea A is covered with a soap	film. If the area of the
	frame of metallic wire is re	educed by 50% , the energ	y of the soap film will be ch	anged by
	a) 100%	b) 75%	c) 50%	d) 25%
68.	When a pinch of salt or any	y other salt which is solubl	le in water is added to wate	er, its surface tension
	a) Increases		b) Decreases	
	c) May increase or decreas	se depending upon salt	d) None of the above	
69.	What is velocity v of a met	allic ball of radius r falling	gin a tank of liquid at the in	stant when its acceleration
	is one-half that of the freel	y falling body?		
			ectively, and the viscosity o	
	a) $\frac{r^2g}{9\eta}(\rho-2\sigma)$	r^2g	r^2g	$\frac{2r^2g}{(a-g)}$
	9η (β 20)	9η (2ρ σ)	9η (β σ)	9η (β' σ)
70.		pap bubble is 1.01 and 1.02	2 atm respectively. The rati	o of their respective
	volume is			
		b) 4	c) 6	d) 8
71.				ter when it is less than half
	filled with water. The dens			
	, ,	b) $2.8 \mathrm{g}\mathrm{cc}^{-1}$	c) $1.8 \mathrm{g} \mathrm{cc}^{-1}$	d) $0.28 \mathrm{g}\mathrm{cc}^{-1}$
72.	One drop of soap bubble of	f diameter <i>D</i> breaks into 2	7 drops having surface ten	sion . The change in
	surface energy is			
	,	b) $4\pi TD^2$	c) $\pi T D^2$	d) $8\pi TD^2$
73.	A small iron sphere is drop			-
	Then, it covers the rest of the path with terminal velocity only. The work done by air friction during the			
	first 32 m of fall is W_1 . The			-
	·	b) $W_1 < W_2$	c) $W_1 = W_2$	d) $W_2 = 32 W_1$
74.	A solid sphere of volume V			
		$< ho< ho_{ m 2,}$ then the ratio of $ m v$	volume of the parts of the s	phere in upper and lower
	liquid is			
	a) $\frac{\rho - \rho_2}{\rho_2 - \rho}$	b) $\frac{\rho_2 - \rho}{\rho - \rho_1}$	c) $\frac{\rho + \rho_1}{\rho + \rho_2}$	d) $\frac{\rho + \rho_2}{\rho + \rho_1}$
7-	P2 P	L LI	P ' P2	L . LT
75.	A wooden ball of density <i>L</i>			v tne surface of water and
	then released. Upto what l		out of water?	d) 7ama
	a) $\frac{d}{d}h$	b) $\left(\frac{d}{D}-1\right)h$	c) <i>h</i>	d) Zero

76.	A hollow sphere of volume V is floating on water suminimum volume of water poured inside the sphere a) $V/2$ b) $V/3$	•	
77.	A rain drop of radius 0.3 mm has a terminal velocity a) 101.73×10^{-4} dyne b) 101.73×10^{-5} dyne	in air = 1 ms^{-1} . The viscou	-
78.	The density of ice and water are respectively g cm	3 . If m gram of ice melts , th	5
	a) $y - \frac{x}{m}$ b) $m(y - x)$	c) $\frac{m}{y} - \frac{m}{x}$	d) <i>my</i>
79.	Two rain drops of same radii r' , falling with termina R . The terminal velocity of the bigger drop is	al velocity $^{\prime}v^{\prime}$ merge and for	m a bigger drops of radius
	a) $v\frac{R}{r}$ b) $v\frac{R^2}{r^2}$	c) <i>v</i>	d) 2 <i>v</i>
80.	Water is flowing through a tube of non-uniform cross	ss-section. Ratio of the radio	us at entry and exit end of
	the pipe is 3:2. Then the ratio of velocities at entry a	-	
	a) 4:9 b) 9:4	c) 8:27	d) 1:1
	Density of ice is ρ and that of water is σ . What will b		
	a) $\frac{M}{\sigma - \rho}$ b) $\frac{\sigma - \rho}{M}$	c) $M\left[\frac{1}{\rho} - \frac{1}{\sigma}\right]$	d) $\frac{1}{M} \left[\frac{1}{\rho} - \frac{1}{\sigma} \right]$
82.	The excess pressure inside a spherical drop of water	r is four time that of anothe	r drop. Then their
	respective mass ratio is		
	a) 1:16 b) 8:1	c) 1:4	d) 1:64
83.	The rate of flow of liquid through a capillary tube of		
	two ends of the capillary is p . If pressure is increase	d by 3 p and radius is reduc	ced to $r/2$, then the rate of
	flow becomes		
	a) V/9 b) 3V/8		d) V/3
84.	Air is streaming past a horizontal air plane wing suc		
	and 90 ms ⁻¹ at the lower surface. If the density of a		e the gross life on the wing?
	If the wing is 10 m long and has an average width of		D 040 L N
o۲	a) 81.9 N b) 8.19 kN	c) 81.9 kN	d) 819 kN
85.	Two solid pieces, one of steel and the other of alumi weights. When the solid pieces are weighed in air	num when immersed comp	netely in water have equal
	a) the weight of aluminium is half the weight of stee	1	
	b) steel piece will weigh more	1	
	c) they have the same weight		
	d) aluminium piece will weigh more		
86.	Two rain drops reach the earth with different termin	nal velocities having ratio 9	:4. Then the ratio of their
	volume is		
	a) 3:2 b) 4:9	c) 9:4	d) 27:8
87.	An incompressible fluid flows steadily through a cyl	indrical pipe which has rad	ius $2r$ at point \emph{A} and radius
	r at B further along the flow direction. If the velocity		=
	a) 2 <i>v</i> b) <i>v</i>	c) $v/2$	d) 4 <i>v</i>
88.	The rate of flow of liquid through an orifice of a tank	= = =	
	a) the size of orifice	b) density of liquid	•
00	c) the height of fluid column	d) acceleration due to gra	-
σ9.	A wooden lock is taken to the bottom of a deep calm	b) decreasing acceleration	_
	a) constant accelerationc) constant velocity	d) decreasing velocity	П
	ej constant velocity	aj accreasing velocity	

- 90. By inserting a capillary tube upto a depth l in water, the water rises to a heighth. If the lower end of the capillary tube is closed inside water and the capillary is taken out and closed end opened, to what height the water will remain in the tube, when l > h?
 - a) Zero

b) l+h

c) 2 h

- d) h
- 91. There are two identical small holes on the opposite sides of a tank containing a liquid. The tank is open at the top. The difference in height between the two holes is h. As the liquid comes out of the two holes, the tank will experience a net horizontal force proportional to

a) $h^{1/2}$

b) $h^{3/2}$

- 92. A bigger drop of radius *R* is converted into *n* smaller drops of radius *r*, the required energy is
 - a) $(4 \pi r^2 n 4 \pi R^2)T$
- b) $\left(\frac{4}{3}\pi r^2 n \frac{4}{3}\pi R^3\right)T$ c) $(4\pi R^2 4\pi r^2)nT$ d) $(n4\pi r^2 n4\pi R^2)T$

- 93. Why the dam of water reservoir is thick at the bottom
 - a) Quantity of water increases with depth
- b) Density of water increases with depth
- c) Pressure of water increases with depth
- d) Temperature of water increases with depth
- 94. A spherical drop of water has 1 mm radius. If the surface tension of water is 70×10^{-3} Nm⁻¹, then the difference of pressure between inside and outside of the spherical drop is
 - a) 35 Nm^{-2}
- b) 70 Nm^{-2} c) 140 Nm^{-2}
- d) Zero
- 95. The level of water in a tank is 5 m high. A hole of area 10 cm² is made in the bottom of the tank. The rate of leakage of water from the hole is
 - a) 10^{-2} m³ s⁻¹
- b) $10^2 \text{m}^3 \text{s}^{-1}$
- c) $10 \text{ m}^3 \text{s}^{-1}$
- d) 10^{-2} m⁻³s⁻¹
- 96. One end of a uniform glass capillary tube of radius r = 0.025 cm is immersed vertically in water to a depth h=1 cm. The excess pressure in Nm⁻² required to blow an air bubble out of the tube (Surface tension of water = $7 \times 10^{-2} \text{ Nm}^{-1}$, Density of water = 10^3 kg m^{-3} , Acceleration due to gravity= 10ms^{-2})
 - a) 0.0048×10^5
- b) 0.0066×10^5
- c) 1.0048×10^5
- d) 1.0066×10^5
- 97. A uniform long tube is bent into a circle of radius R and it lies in a vertical plane. Two liquids of same volume but densities ρ and δ fill half the tube. The angle θ is

- b) $\tan^{-1}\frac{\rho}{s}$
- c) $\tan^{-1} \frac{\delta}{\rho}$
- d) $\tan^{-1}\left(\frac{\rho+\delta}{\rho-\delta}\right)$
- 98. A piece of wood if floating in water. When the temperature of water rises, the apparent weight of the wood will
 - a) Increase

b) Decrease

c) may increase or decrease

- d) remain same
- 99. The surface tension of a liquid is 5 Nm⁻¹. If a film is held on a ring of area 0.02 m², its total surface energy is about
 - a) 2×10^{-2} J
- b) 2.5×10^{-2} J
- c) 2×10^{-1} J
- d) 3×10^{-1} J
- 100. Two pieces of metal when immersed in a liquid have equal upthrust on them; then
- a) Both pieces must have equal weights
- b) Both pieces must have equal densities

- c) Both pieces must have equal volumes
- d) Both are floating to the same depth
- 101. If the work done in blowing a bubble of volume V is W, then the work done in blowing a soap bubble of volume 2 V will be
 - a) W

b) 2 W

- c) $\sqrt{2}$ W
- d) $4^{1/3}W$
- 102. A cylinder drum, open at the top, contains 15 L of water. It drains out through a small opening at the bottom. 5 L of water comes out in time t_1 , the next 5 L in further time t_2 and the last 5 L in further time t_3 . Then
 - a) $t_1 < t_2 < t_3$
- b) $t_1 > t_2 > t_3$
- c) $t_1 = t_2 = t_3$
- d) $t_1 > t_2 = t_3$
- 103. A weightless bag is filled with 5 kg of water and then weighed in water. The reading of spring balance is

- b) 2.5 kgf
- c) 1.25 kgf
- d) Zero
- 104. With an increase in temperature, surface tension of liquid (except molten copper and cadmium)
 - a) increases

b) remain same

c) decreases

- d) first decrease and then increases
- 105. If the length of tube is less and cannot accommodate the maximum rise of liquid then
 - a) liquid will form fountain

- b) liquid will not rise
- c) the meniscus will adjust itself so that the water does not spill
- d) none of the above
- 106. Two capillaries of radii r_1 and r_2 , length l_1 and l_2 respectively are in series. A liquid of viscosity η is flowing through the combination under a pressure difference p. What is the rate of volume flow of liquid?
- a) $\frac{\pi p}{8 \eta} \left(\frac{l_4}{r_1^4} + \frac{l_4}{r_2^4}\right)^{-1}$ b) $\frac{8\pi p}{\eta} \left(\frac{l_1}{r_1^4} + \frac{l_2}{r_2^4}\right)$ c) $\frac{\pi p}{8 \eta} \left(\frac{r_1^4}{l_1} + \frac{r_2^4}{l_2}\right)^{-1}$ d) $\frac{\pi p}{8 \eta} \left(\frac{l_1}{r_1^4} + \frac{l_2}{r_2^4}\right)^{-1}$
- 107. Two spherical soap bubbles of radii r_1 and r_2 in vacuum combine under isothermal conditions. The resulting bubble has radius equal to b) $\frac{r_1 \, r_2}{r_1 + r_2}$ c) $\sqrt{r_1 r_2}$
 - a) $\frac{r_1 + r_2}{2}$

- d) $\sqrt{r_1^2 + r_2^2}$
- 108. A marble of mass x and diameter 2 r is gently released a tall cylinder containing honey. If the marble displaces mass y(< x) of the liquid, then the terminal velocity is proportional to
 - a) (x + y)

- 109. A liquid is kept in a cylindrical vessel which is rotated along its axis. The liquid rises at the sides (figure). If the radius of the vessel is 0.05 m and the sped of rotation is 2 rad s⁻¹, find the difference in the height of the liquid at the centre of the vessel and its sides

- a) 20 cm
- b) 4 cm

c) 2 cm

- d) 0.2 cm
- 110. Water flowing out of the mouth of a tap and falling vertically in streamline flow forms a tapering column, ie the area of cross-section of the liquid column decreases as it moves down. Which of the following is the most accurate explanation for this?

a) Falling water tries to reach a terminal velocity and hence, reduces the area of cross-section to balance upward and downward forces

- b) As the water moves down, its speed increases and hence, its pressure decreases. It is then compressed by atmosphere
- c) The surface tension causes the exposed surface area of the liquid to decrease continuously The mass of water flowing out per second through any cross-section must remain constant. As the
- d) water is almost incompressible, so the volume of water flowing out per second must remain constant. As this is equal to velocity \times area, the area decreases as velocity increases
- 111. The diagram shows a cup of tea seen from above. The tea has been stirred and is now rotating without turbulence. A graph showing the speed v with which the liquid is crossing points at a distance X from Oalong a radius XO would look like

- 112. A sphere of mass M and radius R is dropped in a liquid, then terminal velocity of sphere is proportional to
 - a) *R*

c) R^2

d) $\frac{1}{R^2}$

- 113. Streamline flow is more likely for liquid with
 - a) high density and low viscosity

b) low density and high viscosity

c) high density and high viscosity

- d) low density and low viscosity
- 114. Water stands at level A in the arrangement shown in the figure. What will happen if a jet of air is gently blown into the horizontal tube in the direction shown in the figure?

- a) Water will rise above A in the capillary tube
- b) Water will fall below A in the capillary tube
- c) There will be no effect on the level of water in the capillary tube
- d) Air will emerge from end *B* in the form of bubbles
- 115. Work done forming a liquid drop of radius R is W_1 and that of radius 3R is W_2 . The ratio of work done is
 - a) 1:3

- d) 1:9
- 116. Two bodies are in equilibrium when suspended in water from the arms of a balance. The mass of one body is 36 g and its density 9 g/cm^3 . If the mass of the other is 48 g, its density in g/cm^3 is

d) 5

- 117. The working of an atomizer depends upon
 - a) Bernoulli's theorem

b) Boyle's law

c) Archimedes principle

- d) Newton's law of motion
- 118. An L-shaped tube with a small orifice is held in a water stream as shown in fig. The upper end of the tube is 10.6 cm above the surface of water. What will be the height of the jet of water coming from the orifice? Velocity of water stream is 2.45 m/s

a) Zero

- b) 20.0 *cm*
- c) 10.6 cm
- d) 40.0 cm
- 119. The surface energy of a liquid drop is u. It is sprayed into 1000 equal droplets. Then its surface energy becomes
 - a) u

b) 10 u

- c) 100 u
- d) 1000 u
- 120. In making an alloy, a substance of specific gravity s_1 and mass m_1 is mixed with another substance of specific gravity s_2 and mass m_2 : then the specific gravity of the alloy is
 - a) $\left(\frac{m_1 + m_2}{s_1 + s_2}\right)$
- b) $\left(\frac{s_1s_2}{m_1+m_2}\right)$
- c) $\frac{m_1 + m_2}{\frac{m_1}{s_1} + \frac{m_2}{s_2}}$
- d) $\frac{\frac{m_1}{s_1} + \frac{m_2}{s_2}}{m_1 + m_2}$
- 121. A uniform tapering vessel shown in figure is filled with liquid of density 900 kgm⁻³. The force that acts on the base of the vessel due to liquid is (take $g = 10 \text{ ms}^{-2}$)

- a) 3.6 N
- b) 7.2 N

- c) 9.0 N
- d) 12.0 N
- 122. Two capillary tubes of radii 0.2 cm and 0.4 cm are dipped in the same liquid. The ratio of heights through which liquid will rise in the tubes is
 - a) 1:2

- b) 2:1
- c) 1:4

- d) 4:1
- 123. The water flows from a tap of diameter 1.25 cm with a rate of $5 \times 10^{-5} m^3 s^{-1}$. The density and coefficient of viscosity of water are $10^3 kg \ m^{-3}$ and 10^{-3} Pas, respectively. The flow of water is
 - a) Steady with Reynolds number 5100
- b) Turbulent with Reynolds number 5100
- c) Steady with Reynolds number 3900
- d) Turbulent with Reynolds number 3900
- 124. If there were no gravity, which of the following will not be there for fluid?
 - a) Viscosity

b) Surface tension

c) Pressure

- d) Archimedes' upward thrust
- 125. A cylindrical tank has a hole of $1 cm^2$ in its bottom. If the water is allowed to flow into the tank from a tube above it at the rate of 70 cm^3/sec . then the maximum height up to which water can rise in the tank is
 - a) 2.5 cm
- b) 5 cm

- c) 10 cm
- d) 0.25 *cm*
- 126. The spring balance *A* reads 2 kg with a block of mass *m* suspended from it. A balance *B* reads 5 kg when a beaker with liquid is put on the pan of the balance. The two balances are now so arranged that the hanging mass is inside the liquid in a beaker as shown in figure

- a) The balance A will read more than 2 kg
- b) The balance B will read less than 5 kg
- c) The balance A will read less than 2 kg and B will read more than 5 kg
- d) The balance A will read more than 2 kg and B will read less than 5 kg

127.	If the rise in height of cap a) 1:3	illary of two tubes are 6.6 b) 3:1	cm and 2.2 cm, then the rate c) 1:2	tio of the radii of tubes is d) 1:6
128.		,	water and is accelerated ho	
	_	• •	um at, and (ii) minimum at	
		6	(-)	
	- A D			
	- A	7		
	ВС			
	a) (i) <i>B</i> (ii) <i>D</i>		c) (i) <i>B</i> (ii) <i>C</i>	d) (i) <i>B</i> (ii) <i>A</i>
129.	Two pieces of glass plate easily because of	one upon the other with a	little water in between the	m cannot be separated
	a) Inertia	b) Pressure	c) Surface tension	d) Viscosity
130.	•	•	ratio 1:2. They will have te	-
	a) 4:1	b) 1 : 4	c) 2:1	d) 1:2
131	,		of surface tension of water is	,
131.	a) 4°C	b) 25°C	c) 50°C	d) 75°C
122	•	•	eter 0.1 mm is filled with w	,
134.	upto which water can be	filled without leakage is (S	Surface tension = 75 dyne o	cm ⁻¹ and $g = 1000 \text{ cms}^{-2}$)
	a) 100 cm	b) 75 cm	c) 60 cm	d) 30 cm
133.	A horizontal pipe of cross	-sectional diameter 5 cm	carries water at velocity of	4 ms ⁻¹ . The pipe is
	connected to a smaller pi	pe with a cross-sectional o	diameter 4 cm. the velocity	of water through the smaller
	pipe is			
	a) 6.25 ms^{-1}	b) 5.0 ms ⁻¹	c) 3.2 ms ⁻¹	d) 2.56 ms ⁻¹
134.	We have two (narrow) ca	pillary tubes T_1 and T_2 . The	neir lengths are $l_{ m 1}$ and $l_{ m 2}$ an	d radii of cross-section are
			ler a pressure difference P	
				ibes are connected in series
	and pressure difference a			
	a) $4 cm^3/sec$	b) (16/3)cm ³ /sec		d) None of these
125				al ends. Initially, the valve is
133.	· ·		cal soap bubble of radius <i>r</i> .	•
		-	=	Liiu Z iias sub-
	hemispherical soap bubb	ie as shown in figure. Just	arter opening the varve.	
	a) Air from and 1 flavor to	yuanda and 2. No chango i	n b) Air from and 1 flavor t	cowards and 2 Valuma of the
		=	-	owards end 2. Volume of the
	the volume of the soap	bubbles	soap bubble at end 1 o	
	c) No change occurs			owards end 1. Volume of the
			soap bubble at end in	
136.				s^{-1} . The cross-sectional area
		_	onstant throughout the stre	eam of water and that the
	· · · · · · · · · · · · · · · · · · ·		m 0.15 m below the tap is	
	a) $1.0 \times 10^{-5} \text{m}^2$	b) $2 \times 10^{-5} \text{m}^2$	c) $5 \times 10^{-5} \text{m}^2$	d) $5 \times 10^{-4} \text{m}^2$
137.			equal volume and the relat density of the mixture is 3.'	
	a) $\rho_1 = 6$ and $\rho_2 = 2$		c) $\rho_1 = 12$ and $\rho_2 = 4$	d) None of these

		l of density 0.9 g cm ^{-s} . The , then the velocity of efflux	
a) $\sqrt{900 \times 980} \text{ cms}^{-1}$	b) $\sqrt{1000 \times 980} \text{ cms}^{-1}$	c) $\sqrt{920 \times 980} \text{ cms}^{-1}$	d) $\sqrt{950 \times 980} \text{ cms}^{-1}$
139. A rectangular plate $2m \times 3$ and $4m$ respectively from	the water surface. The tota	al thrust on the plate is	_
	b) 294 N		d) $400 \times 10^3 \text{ N}$
140. A cylinder is filled with liq of the walls is		-	-
	b) <i>hdg</i> /2	c) 2 <i>hdg</i>	d) hdg
141. Water falls from a tap, do	wn the streamline	12.4	
a) Area decreases		b) Area increases	
c) Velocity remains same 142. A vessel of area of cross-se	action A has liquid to a hoje	d) Area remains same	hottom of voccol having
area of cross-section a. Th	e time taken to decrease tl	he level from H_1 to H_2 will	be
a) $\frac{A}{a}\sqrt{\frac{2}{g}}\left[\sqrt{H_1}-\sqrt{H_2}\right]$	b) $\sqrt{2gh}$	c) $\sqrt{2gh(H_1-H_2)}$	d) $\frac{A}{a}\sqrt{\frac{g}{2}}\left[\sqrt{H_1}-\sqrt{H_2}\right]$
143. The total weight of a piece	e of wood is 6 kg. In the floa	ating state in water its $\frac{1}{2}$ par	rt remains inside the water
	t maximum weight is to be	put such that the whole of	the piece of wood is to be
a) 12 kg		c) 14 kg	
144. A soap bubble in air (two soft diameter 30 mm.			
,	b) 4 Pa	c) 16 Pa	,
145. A capillary tube of radius L length $L/4$. If the pressure difference across the first	difference across the two	tubes taken together is p , the	
a) 1:4	b) 1:1	c) 4:1	d) 2:1
	ove the surface of the oil. T	he specific gravity of the oi	lis
a) $\frac{5}{3}$	b) $\frac{4}{2}$	c) $\frac{3}{2}$	d) 1
147. The excess pressure inside		_	
of their surface areas is	e one soup subsite is timee	intes that morae a second	boup bubble, then the rutto
a) 1:9	b) 1:3	c) 3:1	d) 1:27
148. A streamline body with re		air from a height h_1 on the	•
		rsion of the body into the li	
R			
a) $\sqrt{2 h_1/g}$	b) $\sqrt{2 h_1/g} \times \frac{\rho_1}{\rho_2}$	c) $\sqrt{\frac{2h_1}{g}} \times \frac{\rho_1}{\rho_2}$	d) $\sqrt{\frac{2h_1}{g}} \times \frac{\rho_1}{(\rho_2 - \rho_1)}$
149. A liquid does not wet the s	sides of a solid, if the angle	of contact is	•
a) Obtuse	b) 90°	c) acute	d) Zero

150. A log of wood of mass $120 \ kg$ floats in water. The w	reight that can he nut on ra	ft to make it just sink should
be (density of wood = 600 kg/m^3)	reigne that can be put on ra	it to make it just sink, should
a) $80 kg$ b) $50 kg$	c) 60 <i>kg</i>	d) 30 <i>kg</i>
151. Typical silt(hard mud) particle of radius 20µm is on	, ,	, ,
the viscosity of lake water is 1.0 mPa, density is 100		
motion). The terminal speed with which the particl	•	•
a) 0.67 b) 0.77	c) 087	d) 0.97
152. Water rises in a capillary tube to a height h . Choose	,	,
following.		
a) On the surface of Jupiter, height will be less than	h	
b) In a lift moving up with constant acceleration he		
c) On the surface of moon the height is more than h	=	
d) In a lift moving down with constant acceleration		
153. A horizontal pipe line carries water in streamline fl	=	\cos -sectional area is 10 cm^2
the water velocity is 1 ms $^{-1}$ and pressure is 2000 F	-	
cross-sectional area is 5 cm^2 , is	•	1
a) 200 Pa b) 400 Pa	c) 500 Pa	d) 800 Pa
154. Radius of an air bubble at the bottom of the lake is	r and it becomes 2rwhen tl	
surface of the lake. If $ ho$ cm of water be the atmosph		•
a) 2 <i>p</i> b) 8 <i>p</i>	c) 4p	d) 7 <i>p</i>
155. Water is flowing through a horizontal pipe of varying	ng cross-section. If the pres	ssure of water equals 2 cm of
mercury, where the velocity of the flow is 32 cm s ⁻	¹ , what is the pressure at a	nother point, where the
velocity of flow is 65 cm s^{-1} ?	2	
a) 1.02 cm of Hg b) 1.88 cm of Hg	c) 2.42 cm of Hg	d) 1.45 cm of Hg
156. A vessel whose bottom has round hole with diamet	er of 1 mm is filled with wa	iter. Assuming that surface
tension acts only at hole, then the maximum height	to which the water can be	filled in vessel without
leakage is(surface tension of water = 7.5×10^{-2} N		
a) 0.3 cm b) 3 mm	c) 3 cm	d) 3 m
157. In a capillary rise experiment, the water level rises	to a height of 5 cm. If the sa	ame capillary tube is placed
in water such that only 3 cm of the tube projects ou	tside the water level, then	
a) water will begin to overflow through the capillar	У	
b) angle of contact decreases		
c) angle of contact increases		
d) water will rise to a level less than 3 cm		
158. Two stretched membranes of area 2 cm ² and 3 cm ²	are placed in a liquid at th	e same depth. The ratio of
pressure on them is		
a) 1:1 b) 2:3	c) 3:2	d) $2^2:3^2$
159. A balloon of volume 1500 m^3 and weighing 1650 kg		
(density 0.2 kg m^{-3}). If the density of air be 1.3 kgm	-	d to the balloon will be
a) 300 kg b) 1950 kg	c) 1650 kg	d) Zero
160. A steel ball is dropped in oil then,		
a) the ball attains constant velocity after some time		
c) the speed of ball will keep on increasing	d) None of the above	
161. A manometer connected to a close tap reads 3.5×10^{-2}		is opened, the reading of
manometer falls to $3.0 \times 10^5~\text{Nm}^{-2}$, then velocity of		_
a) 100 ms^{-1} b) 10 ms^{-1}	c) 1 ms ⁻¹	d) $10\sqrt{10} \text{ ms}^{-1}$
162. The volume of an air bubble becomes three times a Assuming atmospheric pressure to be 75 <i>cm</i> of <i>Hg</i>		

mercury, the depth of the lake is

	a) 5 m	b) 10 m	c) 15 m	d) 20 m
163.	_ ·	=	ontaining a liquid $\sigma(\sigma > \rho)$	
	_	_	prium, with its lower end re	_
		rod makes an angle θ with	the horizontal. Then $\sin \theta$ is	s equal to
	a) $\frac{1}{2}\sqrt{\frac{\sigma}{\rho}}$	b) $\frac{1}{2}\frac{\sigma}{\rho}$	c) $\sqrt{\frac{\rho}{\sigma}}$	σ
	$\frac{a}{2}\sqrt{\frac{a}{\rho}}$	$\frac{1}{2}\frac{1}{\rho}$	$\sqrt{\sigma}$	$\sqrt{\rho}$
164.	Two soap bubbles of radii	r_1 and r_2 equal to 4 cm an	d 5 cm respectively are tou	ching each other over a
		wn in figure). Its radius wil		8
	A	0 ,		
	\int_{A}^{A} 5 cm			
	(4 cm			
	B			
	a) 4 cm	b) 4.5 cm	c) 5 cm	d) 20 cm
165.	-		remaining above the surfa	
	material form which the c	_		y
	a) 0.6 g cm^{-3}	b) 1.0 g cm^{-3}	c) 0.4 g cm^{-3}	d) 0.24 g cm^{-3}
166.	, ,		equal to droplets. If surfac	, ,
	work done in this process			
	a) $2\pi R^2 T$	b) $3\pi R^2 T$	c) $4\pi R^2 T$	d) $2\pi RT^2$
167.	If a liquid is placed in a ve	rtical cylindrical vessel and	d the vessel is rotated abou	t its axis, the liquid will
	take the shape of figure			
) (
	a)	b)	c)	d)
		Sour EDIL	ATION	
168.			in radius respectively. If th	-
			d on the bottom of the bott	
	a) 30 N	b) 150 N	c) 300 N	d) 600 N
169.	_		ydraulic press to exert a for	
		•	hich supports an object ha	0
4 = 0	a) $100 cm^2$	b) $10^9 cm^2$	c) $2 \times 10^4 \ cm^2$	d) $2 \times 10^{10} \ cm^2$
170.		d in a long column of viscou	us liquid. Which of the follo	wing graphs represent the
	variation of	. Line -		
	(i) gravitational force with			
	(ii) viscous force with tim(iii) net force acting on the			
	$F \mathbf{A}$	e ban with time:		
	P			
	Q			
	R			
	$t \longrightarrow t$			

171. The onset of turbulence in a liquid is determined by

a) Pascal's law

a) Q, R, P

b) Magnus effect

b) R, Q, P

c) Reynold's number

c) P, Q, R

- d) Bernoulli's principle
- 172. An object weighs m_1 in a liquid of density d_1 and that in liquid of density d_2 is m_2 . The density d of the object is

d) R, P, Q

	a) $d = \frac{m_2 d_2 - m_1 - d_1}{m_1 + m_2}$	b) $d = \frac{m_1 d_1 - m_2 - d_2}{m_1 d_2 + m_2 + d_2}$	c) $d = \frac{m_2 d_1 - m_1 - d_2}{m_1 - m_2}$	d) $d = \frac{m_1 d_2 - m_2 - d_1}{m_1 + m_2 + m_3}$
			• •	• •
1/3.			riable cross-section. If the j	
	= = =	v, the pressure at another	point where the flow of sp	eed is $2v$, is (take density of
	water as ρ)	2	2	
	a) $p - \frac{3\rho v^2}{2}$	b) $p - \frac{\rho v^2}{2}$	c) $p - \frac{3\rho v^2}{4}$	d) $p - \rho v^2$
174.	A cylindrical vessel is fille	d with equal amounts of w	eight of mercury on water.	The overall height of the
	two layers is 29.2 cm, spe	cific gravity of mercury is 1	13.6. Then the pressure of	the liquid at the bottom of
	the vessel is		•	•
	a) 29.2 cm of water		b) 29.2 /13.6 cm of merci	ıry
	c) 4 cm of mercury		d) 15.6 cm of mercury	
175.	-	e of radius 0.015 cm is dip	,	es to height of 15 cm within
		_	to be 0°, the surface tension	_
	$1000 \text{ kg m}^{-3}, \text{g} = 9.81 \text{ ms}$,	II water
	a) 0.11Nm ⁻¹		c) 0.072 Nm ⁻¹	d) None of these
176	*		such that its diameter incre	
1,0	surface tension of solutio		den macits alameter mer	
			c) $4\pi(D^2 - d^2)S$	d) $8\pi(D^2 - d^2)$ S
177				s opened the reading of the
1//.		0^5 $pascal$. Then the velocity	-	s opened the reading of the
	a) $7 ms^{-1}$	b) $8 ms^{-1}$		d) $10 ms^{-1}$
170				,
1/8.	=		ig soap solution in air, with	the help of a glass tube but
	not water bubbles. It beca	Sec. Last	d., . t. laura a., ufa a. t.a.	al au
	•		ore due to large surface ter	ision
	•	side water bubble being les		
		side water bubble being m	75 1 1 7 1 7 1 7 1	
450		side water bubble being les		.1 6 6 .1 . 1
179.			quare hole of side a at a de	-
		_	rom the top. When the tank	
	-	•	d from both holes are the s	<u>-</u>
	a) 2 <i>πa</i>	b) <i>A</i>	c) $\frac{a}{2\pi}$	d) $\frac{a}{\pi}$
180.	If the atmospheric pressu	re is P_{-} then the pressure P_{-}	P at depth h below the surf	
100.	open to the atmosphere is		a dividep in the bottom one bottom.	acc or a require or accions, p
	a) $P_a - \frac{\rho g h}{2}$	b) $P_a - \rho g h$	c) P_a	d) $P_a + \rho g h$
181.	A ball whose density is 0.4	4×10^3 kg m ⁻³ falls into wa	ater from a height of 9 cm.	Γο what depth does the ball
	sink?	<u> </u>	O .	•
	a) 9 cm	b) 6 cm	c) 4.5 cm	d) 2.25 cm
182.		,	at is spinning clockwise thr	
		symmetric around the ball		0
		•	larger than that below the	hall
	-		smaller than that below the	
	S4 : There is a net upward		omaner man mac below m	o bun
	a) S1, S2 and S4	b) S2 and S4	c) S4 only	d) S3 only
183	•		•	pectively at <i>M</i> and <i>N</i> . For a
1001	streamline flow of liquid t		an or our mana 0.00 m res	pochivery at 1-1 and 14. 1 of a
	or cammine now or niquid t	no race of figure flow is		

d) 4.3

b) Greater at M than N

b) Bernoulli's principle

d) Same at M and N

184. A piece of solid weighs 120 g in air, 80 g in water and 60 g in a liquid. The relative density of the solid and

c) $\frac{3}{2}$, 2

c) Greater at N than at M

a) Archimedes' principle

a) 3,2

a) Changing continuously with time

that of the liquid are respectively

185. An aeroplane gets its upward lift due to phenomenon described by the

d) $2^{8/3} \pi r^2 T$

	d radius r is released in a visc	cous liquid. The value of i	ts terminal velocity is
proportional 1	m	\overline{m}	
a) $\frac{1}{r}$	b) $\frac{m}{r}$	c) $\sqrt{\frac{m}{r}}$	d) <i>m</i> only
196. 16 cm ³ Of water flo	ws per sec through a capillary of h cm of water. If a tube of the land the quantity of water flowing.	he same length and radiu	
a) 16 cm ³	b) 1 cm ³	c) 4 cm^3	d) 8 cm ³
correct? a) The sum of the te		ts together is equal to ter	ich of the following statements is
c) The sum of the ra	adii of the two droplets is equ	al to the radius of the dro	op
d) The sum of the su	urface areas of the two drople	ets is equal to the surface	area of the original drop
198. The excess pressure	e inside a spherical drop of ra	dius r of a liquid of surfa	ce tension T is
a) Directly proporti	onal to $oldsymbol{r}$ and inversely propo	ortional to T	
b) Directly proporti	onal to T and inversely propo	ortional to <i>r</i>	
	onal to the product of T and T		
	tional to the product of <i>T</i> and		
		If some amount of mercu	ry is poured in it then height of
mercury in the trou			D. v.
a) 3.6 cm	b) 7.2 cm	c) 6 cm	d) None of these
200. Surface tension of a	ce between molecules	b) Electrical force be	otwoon moloculos
c) Adhesive force be		d) Cohesive force be	
201. Surface tension van		uj donesive force be	eween molecules
a) absolute zero ten		b) transition temper	rature
c) critical temperat		d) None of the above	
202. Water in a vessel of	uniform cross-section escape	es through a narrow tube	at the base of the vessel. Which
graph given below r	represents the variation of the	e height h of the liquid w	ith timet?
a) h	b)	c) h	$\frac{h}{h}$
203. A block of ice floats a) Remains same	on a liquid of density 1.2 in a b) Rises	beaker then level of liques) Lowers	id when ice completely melt d) (a), (b) or (c)
-	liameter 2.8 mm breaks up in		
a) Zero	b) 19 erg	c) 46 erg	d) 74 erg
•	•		ternal diameter. It is supported
-	—		vater is in glass vessel. If an extra
	d to pull it away from water,		
a) 72.07 dyne cm ⁻¹	-	c) 65.35 dyne cm ⁻¹	
_	e of size L is dipped in a liquid	_	ane is formed. If the surface
•	T, then the force acting on a fr		d) 16 T /I
a) 2 <i>T/L</i>	b) 4 <i>T/L</i>	c) 8 <i>T/L</i>	d) 16 <i>T/L</i>
GPLUS EDUCATION	WEB: WWW.GPLUSEDUCA	ATION.ORG PHO	ONE NO: 8583042324 Page 19

194. Two mercury drop (each of radius r) merge to form a bigger drop, if T is the surface tension is

c) $2\pi r^2 T$

b) $4 \pi r^2 T$

a) $2^{5/3} \pi r^2 T$

207.		5cm of mercury. If the tube mersed in the mercury rese	-	-
	a) 152 <i>cm</i>	b) 76 <i>cm</i>	c) 38 <i>cm</i>	d) $38\sqrt{3}cm$
208.		c wire enclosing a surface areduced by 50%, the energy b) 75%		_
209		pherical ball of radius a fall	•	
2071	a) a	b) a^2	c) a^3	d) a^{-1}
210		m of a tank containing a liq	,	u) u
210.	a) Acceleration due to gra		b) Height of the liquid col	umn
	c) Area of the bottom sur		d) Nature of the liquid	uiiii
211		ped in water. Another iden	•	a coan water colution
211.		ows the relative nature of t		-
	All all	ows the relative flature of t	The fiquid columns in the tw	o tubes :
	a)	b)	c)	d)
212.	Blood is flowing at the rat	te of 200 cm^3 s^{-1} in a capil	lary of cross sectional area	$0.5 m^2$. The velocity of
	flow, in mms^{-1} , is			
	a) 0.1	b) 0.2	c) 0.3	d) 0.4
213.	Speed of 2 cm radius ball	in a viscous liquid is 20 cm	s^{-1} . Then the speed of 1 cm	n radius ball in the same
	liquid is			
	a) 5 cms ⁻¹	b) 10 cms ⁻¹	c) 40 cms ⁻¹	d) 80 cms ⁻¹
214.	Three liquids of equal ma	sses are taken in three ider	ntical cubical vessels \emph{A} , \emph{B} an	nd <i>C</i> . Their densities are
	ρ_A , ρ_B and ρ_C respectively vessel is	$ abla$ but $ abla_A < abla_B < abla_C $. below	the force extract by the liq	uid on the base of cubical
	a) maximum in vessel $\mathcal C$		b) maximum in vessel $\mathcal C$	
	c) the same in all the vess	sels	d) maximum in vessel A	
215.	A vessel whose bottom ha	as round holes with diamet	er of 1 mm is filled with wa	ter. Assuming that surface
		, then the maximum height		filled in vessel without
	leakage is (Surface tensio	n of water is $75 imes 10^{-3}$ Nm	n^{-1} and $g = 10 \text{ ms}^{-2}$)	
	a) 3 cm	b) 0.3 cm	c) 3 mm	d) 3 m
216.	An ice block contains a gla	ass ball when the ice melts	within the water containin	g vessel, the level of water
	a) Rises		b) Falls	
	c) Unchanged		d) First rises and then fall	S
217.	Water is flowing through	a pipe of constant cross-se	ction. At some point the pip	be becomes narrow and the
	cross-section is halved. The	he speed of water is		
	a) reduced to zero		b) decreased by a factor of	of 2
	c) increased by a factor o	f 2	d) unchanged	
218.		orizontal pipe having two d	ifferent cross-sections of a	rea A and2 A. If the
	•			essure at the thicker cross-
	section is (take the densit		J , J 1	
	· · · · · · · · · · · · · · · · · · ·	b) $\frac{v}{4}$, $p + \frac{3}{8}\rho v^2$	c) $\frac{v}{2}$, $p + \frac{3}{8}\rho v^2$	d) $v, p + \frac{3}{4}\rho v^2$
219.	The density ρ of water of the relation	bulk modulus B at a depth	y in the ocean is related to	the density at surface $ ho_0$ by
	a) $\rho = \rho_0 \left[1 - \frac{\rho_0 g y}{B} \right]$	b) $\rho = \rho_0 \left[1 + \frac{\rho_0 g y}{B} \right]$	c) $\rho = \rho_0 \left[1 + \frac{B}{\rho_0 hgy} \right]$	$d) \rho = \rho_0 \left[1 - \frac{B}{\rho_0 g y} \right]$

220. A block is submerged in vessel filled with water by a spring attached to the bottom of the vessel. In equilibrium, the spring is compressed. The vessel now moves downwards with acceleration a(< g). The spring length a) Will become zero b) Will decrease but not zero c) Will increase d) May increase or decrease or remain constant 221. Two solids A and B float in water. It is observed that A floats with $\frac{1}{2}$ of its body immersed in water and B floats with $\frac{1}{4}$ of its volume above the water level. The ratio of the density of A to that of B is c) 3:4 b) 2:3222. A small spherical solid ball is dropped from a great height in a viscous liquid. Its journey in the liquid is best described in the diagram given below by the a) Curve A b) Curve B c) Curve C d) Curve D 223. Calculate the force of attraction between two parallel plates separated by a distance 0.2 mm after a water drop of mass 80 mg is introduced between them. The wetting is assumed to be complete. (Surface tension of water is $0.07 \,\mathrm{Nm}^{-1}$) c) 0.42 N a) 0.14 N b) 0.28 N d) 0.56 N 224. Two helium filled balloons are floating next to each other at the ends of strings tied to a cable. The facing surfaces of the balloons are separated by 1 to 2 cm. If you blow through the opening between the balloons, then a) They more away from each other b) They move towards each other c) They are unaffected d) Nothing can be said about their separation 225. A hemispherical bowl just floats without sinking in a liquid of density 1.2×10^3 kg m⁻³. If outer diameter and the density of the bowl are 1 m and 2×10^4 kg m⁻³ respectively, then the inner diameter of the bowl will be a) 0.94 m b) 0.96 m c) 0.98 m d) 0.99 m 226. A body of uniform cross-sectional area floats in a liquid of density thrice its value. The portion of exposed height will be a) 2/3 b) 5/6 d) 9/10 c) 1/6 227. Work done in increasing the size of soap bubble from radius of 3 cm to 5 cm is nearly (surface tension of soap solution = 0.03Nm^{-1}) a) 0.2π m] b) 2π mJ c) $0.4 \, \pi \, \text{mJ}$ d) 4π mJ

a) $\frac{Q}{4}$

b) 16 Q

228. Under a pressure head, the rate of orderly volume flow of liquid through a capillary tube is Q. If the length of capillary tube were doubled and the diameter of the bore is halved, the rate of flow would become

			Gplus Education
229. To what height should a c which the liquid presses the vessel. If should be	-		d to make the force with by the liquid on the bottom of
a) Equal to the radius 230. A jar id filled with two no made of a material of den	sity ρ_3 , is dropped in the	having densities ρ_1 and ρ_2 jar. It comes to equilibriun	,
figure. Which of the follo	wing is true for $ ho_1, ho_2$ and	d ρ ₃ ?	

b) $\rho_1 < \rho_3 < \rho_2$ c) $\rho_1 < \rho_2 < \rho_3$ d) $\rho_1 < 3 < \rho_2$

231. A vessel contains oil (density 0.8 g cm⁻³) over mercury (density 136 g cm⁻³). A homogenous sphere floats with half volume immersed in mercury and the other half in oil. The density of the material of the sphere in g cm $^{-3}$ is

a) 12.8

b) 7.2

c) 64

d) 3.3

232. If two ping pong ball are suspended near each other and a fast stream of air is produced within the space of the balls, the balls

a) Come nearer to each other

b) Move away from each other

c) Remain in their original positions

d) Move far away

233. The rate of flow of water in a capillary tube of length l and radius r is V. The rate of flow in another capillary tube of length 2l and radius 2r for same pressure difference would be

b) 9 V

c) 8 V

d) 2 V

234. A block of wood weighs 4N in air and 3N when immersed in a liquid. The buoyant force in newton is

a) Zero

b) 1

c) 3/4

d) 4/3

235. From amongst the following curves, which one shows the variation of the velocity v with time t for a small sized spherical body falling vertically in a long column of a viscous liquid

236. The weight of an aeroplane flying in the air is balanced by

a) Vertical component of the thrust created by air currents striking the lower surface of the wings

b) Force due to reaction of gases ejected by the revolving propeller

c) Upthrust of the air which will be equal to the weight of the air having the same volume as the plane

d) Force due to the pressure difference between the upper and lower surfaces of the wings created by different air speeds on the surfaces

237. An iceberg is floating in water. The density of ice in the iceberg is 917 kg m^{-3} and the density of water is 1024 kg m^{-3}

a) 5%

b) 10%

c) 12%

d) 8%

238. Two tubes A and B are in series. Radius of A is R and that of B is 2R. If water flows through A with velocity then velocity of water through *B* is

c) $\frac{v}{4}$

239. A liquid X of density 3.36 g cm⁻³ is poured in a U-tube, which contains Hg. Another liquid Y is poured in left arm with height 8 cm, upper levels of X and Y are same. What is density of Y?

- a) $0.8 \, \text{gcc}^{-1}$
- b) $1.2 \, \text{gcc}^{-1}$
- c) $1.4 \, \text{gcc}^{-1}$
- d) $1.6 \,\mathrm{gcc}^{-1}$
- 240. A vertical U-tube of uniform inner cross section contains mercury in both sides of its arms. A glycerin (density = $1.3 \ g/cm^3$) column of length $10 \ cm$ is introduced into one of its arms. Oil of density $0.8 \ gm/cm^3$ is poured into the other arm until the upper surfaces of the oil and glycerin are in the same horizontal level. Find the length of the oil column. Density of mercury = $13.6 \ g/cm^3$

- a) 10.4 cm
- b) 8.2 cm
- c) 7.2 cm
- d) 9.6 cm
- 241. On the surface of the liquid in equilibrium, molecules of the liquid possess
 - a) maximum potential energy

b) maximum potential energy

c) maximum kinetic energy

- d) minimum kinetic energy
- 242. A cubical block is floating in a liquid with half of its volume immersed in the liquid. When the whole system accelerates upwards with acceleration of g/3, the fraction of volume immersed in the liquid will be

a) $\frac{1}{2}$

- 243. The heat evolved for the rise of water when one end of the capillary tube of radius *r* is immersed vertically into water is (Assume surface tension =T and density of water = ρ)

- d) None of these
- 244. What change in surface energy will be noticed when a drop of radius R splits up into 1000 droplets of radiusr, surface tensionT?
 - a) $4 \pi R^2 T$
- b) $7 \pi R^2 T$
- c) $16 \pi R^2 T$
- d) $36 \pi R^2 T$
- 245. Two soap bubbles A and B are formed at the two open ends of a tube. The bubble A is smaller than bubble B. Valve and air can flow freely between the bubbles, then
 - a) There is no change in the size of the bubbles
 - b) The two bubbles will become of equal size
 - c) A will become smaller and B will become larger
 - d) *B* will become smaller and *A* will become larger
- 246. A raindrop with radius 1.5 mm falls from a cloud at a height 1200 m from ground. The density of water is $1000 \, kg/m^3$ and density of air is $1.2kg/m^3$. Assume the drop was spherical throughout the fall and there is no air drag. The impact speed of the drop will be
 - a) $27 \, km/h$
- b) $550 \, km/h$
- c) Zero

- d) $129 \, km/h$
- 247. A metallic sphere of mass M falls through glycerine with a terminal velocity v. If we drop a ball of mass 8 *M* of same metal into a column of glycerine, the terminal velocity of the ball will be
 - a) 2 v

b) 4 v

d) 16 v

For a ball falling in a liqu	iid with constant velocity, r	ratio of the resistance force	due to the liquid to that due
to gravity is			
a) 1	b) $\frac{2a^2\rho \text{ g}}{9 n^2}$	c) $\frac{2a^2(\rho-\sigma)g}{9\eta}$	d) None of these
A solid sphere of density	$\eta(>1)$ times lighter than	water is suspended in a wa	ter tank by a string tied to
-		-	•
	•		
a) $\left(\frac{\eta-1}{\eta}\right)mg$	b) ηmg	c) $\frac{mg}{\eta-1}$	d) $(\eta - 1)mg$
Three tubes A , B and C a	re connected to a horizont	al pipe in which liquid is flo	wing. The radii of pipe at
the joints of A , B and C a	re 2 cm, 1 cm and 2 cm res	pectively. The height of liqu	iid
$A \parallel$ $B \parallel$	<u>C</u>		
a) In A is maximum	b) In A and B is equal	c) Is same in all three	d) In A and C is same
leaves the tap is 0.4 m/s.	. The diameter of the water	stream at a distance 2×10^{-3}	0^{-1} m below the tap is close
to			
,		•	d) 5.0×10^{-3} m
•	· ·	,	d) 9:1
A spherical ball of radius r and relative density 0.5 is floating in equilibrium in water with half of it			
		oall down so that whole of r	t is just immersed in water
_		4	2
a) $\frac{s}{12}\pi r^4 \rho g$	b) $0.5 \rho rg$	c) $\frac{1}{3}\pi r^3 \rho g$	d) $\frac{2}{3}\pi r^4 \rho g$
A open U-tube contains r	mercury. When 11.2 cm of	water is poured into one of	the arms of the tube, how
high dose the mercury ri	se in the other arm from it	s initial unit?	
a) 0.56 cm	b) 1.35 cm	c) 0.41 cm	d) 2.32 cm
			al velocity $0.5~\mathrm{ms^{-1}}$. The
	,	c) 2.5	d) 1.5
_	_		
,			
, ,		, ,	
	ace energy of 1 small drop a	and I large drop if 1000 dro	ops combined to form 1 large
a) 100:1	b) 1000:1	c) 10:1	d) 1:100
For flow of a liquid to be	streamline, the following of	condition (s) apply	
a) Fluid should have high	h viscosity	b) Critical velocity should	d be large
c) Diameter of the tube s	should be small	d) All of the above	
		adius of other arm. What fo	rce should be applied on
a) 26.5 N	b) 62.5 N	c) 6.25 N	d) 8.3 N
	to gravity is a) 1 A solid sphere of density its base as shown in fig. 1 a) $\left(\frac{\eta-1}{\eta}\right)mg$ Three tubes A,B and C at the joints of A,B and C	to gravity is a) 1 b) $\frac{2a^2\rho}{9\eta^2}$ A solid sphere of density $\eta(>1)$ times lighter than its base as shown in fig. If the mass of the sphere is a) $\left(\frac{\eta-1}{\eta}\right)mg$ b) ηmg Three tubes A,B and C are connected to a horizont the joints of A,B and C are 2 cm, 1 cm and 2 cm res $\frac{A}{\eta} = \frac{B}{\eta} = \frac{C}{\eta}$ a) In A is maximum b) In A and B is equal Water is flowing continuously from a tap having an leaves the tap is 0.4 m/s . The diameter of the water to a) $7.5 \times 10^{-3} \text{ m}$ b) $9.6 \times 10^{-3} \text{ m}$ The excess of pressure inside the first soap bubble a) 1:3 b) 1:9 A spherical ball of radius r and relative density 0.5 immersed in water. The work done in pushing the lis: (where ρ is the density of water) a) $\frac{5}{12}\pi r^4 \rho g$ b) $0.5\rho rg$ A open U-tube contains mercury. When 11.2 cm of high dose the mercury rise in the other arm from it a) 0.56 cm b) 1.35 cm An iron sphere of mass $20 \times 10^{-3} \text{kg}$ falls through a terminal velocity (in ms ⁻¹) of another iron sphere a) 4.5 b) 3.5 When the temperature increases, the viscosity of a) gas decreases and liquid increases C) gas and liquid increases What is the ratio of surface energy of 1 small drop a drop? a) $100:1$ b) $1000:1$ For flow of a liquid to be streamline, the following of a) Fluid should have high viscosity c) Diameter of the tube should be small Radius of one arm of hydraulic lift is four times of r narrow arm to lift 100kg ?	a) 1 b) $\frac{2a^2\rho}{9\eta^2}$ c) $\frac{2a^2(\rho-\sigma)g}{9\eta}$ A solid sphere of density $\eta(>1)$ times lighter than water is suspended in a waits base as shown in fig. If the mass of the sphere is m then the tension in the statistic base as shown in fig. If the mass of the sphere is m then the tension in the statistic base as shown in fig. If the mass of the sphere is m then the tension in the statistic base as shown in fig. If the mass of the sphere is m then the tension in the statistic base as shown in fig. If the mass of the sphere is m then the tension in the statistic base as shown in fig. If the mass of the sphere is m then the tension in the statistic base as shown in fig. If the mass of the sphere is m then the tension in the statistic base as shown in fig. If the mass of the sphere is m then the tension in the statistic base as shown in fig. If the mass of the sphere is m then the tension in the statistic base as shown in fig. If the mass of the sphere is m then the tension in the statistic base as shown in fig. If the mass of the sphere is m then the tension in the statistic base as shown in fig. If the mass of the sphere is m then the tension in the statistic base as shown in fig. If the mass of the sphere is m then the tension in the statistic base as shown in fig. If the mass of the sphere is m then the tension in the statistic base as m to m and m a

260.	0. A denotes the area to the right on the cube $\it h$ the depth of an orifice of area of $\it c$	ross-sectionA, b	elow the
	liquid surface. The velocity of the liquid flowing through the orifice is		

a)
$$\sqrt{2 \text{ g} h}$$

b)
$$\sqrt{2 \text{ gh}} \sqrt{\left(\frac{A^2}{A^2 - a^2}\right)}$$
 c) $\sqrt{2 \text{ gh}} \sqrt{\left(\frac{A}{A - a}\right)}$ d) $\sqrt{2 \text{ gh}} \sqrt{\left(\frac{A^2 - a^2}{A^2}\right)}$

c)
$$\sqrt{2 \text{ gh}} \sqrt{\left(\frac{A}{A-a}\right)^2}$$

d)
$$\sqrt{2 gh} \sqrt{\left(\frac{A^2 - a^2}{A^2}\right)^2}$$

261. Water flows in a streamlined manner through a capillary tube of radius a, the pressure difference being P and the rate of flow Q. If the radius is reduced to a/2 and the pressure increased to 2P, the rate of flow becomes

c)
$$\frac{Q}{4}$$

d)
$$\frac{Q}{8}$$

262. A tank is filled with water upto a height H. Water is allowed to come out of a hole P in one of the walls at a depth h below the surface of water (see figure). Express the horizontal distance X in terms of H and h

a)
$$X = \sqrt{h(H-h)}$$

b)
$$X = \sqrt{\frac{h}{2}(H - h)}$$
 c) $X = 2\sqrt{h(H - h)}$ d) $X = 4\sqrt{(H - h)}$

c)
$$X = 2\sqrt{h(H-h)}$$

$$d) X = 4\sqrt{(H-h)}$$

263. Two drops of the same radius are falling through air with a steady velocity of 5 cm per sec. If the two drops coalesce, the terminal velocity would be

c)
$$5 \times (4)^{1/3}$$
 cm per sec d) $5 \times \sqrt{2}$ cm per sec

d)
$$5 \times \sqrt{2}$$
 cm per sec

264. The reading of spring balance when a block is suspended from it in air is 60N. This reading is changed to 40N when the block is submerged in water. The specific gravity of the block must therefore

265. The viscous force acting on a rain drop of radius 0.35 mm falling through air with a velocity of 1 ms^{-1} , is $(\eta = 2 \times 10^{-4} \text{ N s m}^{-2})$

a)
$$6.6 \times 10^{-6} \text{ N}$$

b)
$$6.6 \times 10^{-5}$$
 N

c)
$$1.32 \times 10^{-7}$$
 M

d)
$$13.2 \times 10^{-7} \text{ N}$$

266. An L-shaped glass tube is just immersed in flowing water such that its opening is pointing against flowing

water. If the speed of water current is v, then

- a) The water in the tube rises to height $\frac{v^2}{2a}$
- b) The water in the tube rises to height $\frac{g}{2v^2}$
- c) The water in the tube does not rise at all
- d) None of these
- 267. An object of weight w and density ρ is submerged in a fluid of density ρ_1 . Its apparent weight will be

a)
$$w(\rho - \rho_1)$$

b)
$$(\rho - \rho_1)/w$$

c)
$$w\left(1-\frac{\rho_1}{\rho}\right)$$

d)
$$w(\rho_1 - \rho)$$

- 268. A rectangular vessel when full of water, takes 10 min to be emptied through an orifice in its bottom. How much time will take to be emptied when half filled with water?
- b) 7 min
- c) 5 min
- 269. A lead shot of 1mm diameter falls through a long column of glycerine. The variation of its velocity v. with distance covered is represented by

- 270. There are two holes one each along the opposite sides of a wide rectangular tank. The cross-section of each hole is 0.01m^2 and the vertical distance between the holes is one meter. The tank is filled with water flows out of the holes is (density of water= 1000 kgm^{-3})
 - a) 100

b) 200

c) 300

- d) 400
- 271. The diagram shows three soap bubbles A, B and C prepared by blowing the capillary tube fitted with stop cocks S, S_1 , S_2 and S_3 . With stop cock S closed and stop cocks S_1 , S_2 and S_3 . Opened

- a) B will start collapsing with volumes of A and C increasing
- c) Volume of *A*, *B* and *C* will become equal in equilibrium
- b) C will start collapsing with volume of A and B increasing
- d) $_{B}^{\it C}$ and $_{\it A}$ will both start collapsing with volume of $_{\it B}$ increasing
- 272. A hydraulic lift is designed to life cars of maximum mass of 3000 kg. The area of cross-section of the piston carrying the load is 4.25×10^{-12} m². What maximum pressure the smaller piston have to bear?
 - a) $6.92 \times 10^5 \text{ Nm}^{-2}$
- b) $7.82 \times 10^7 \text{ Nm}^{-2}$
- c) $9.63 \times 10^9 \,\mathrm{Nm}^{-2}$
- d) $13.76 \times 10^{11} \text{ Nm}^{-2}$
- 273. A capillary tube is attached horizontally to a constant head arrangement. If the radius of the capillary tube is increased by 10% then the rate of flow of liquid will change nearly by
 - a) ± 10%
- b) +46%
- c) -10%
- d) -40%
- 274. Bernoulli's theorem is a consequence of the law of conservation of
 - a) Momentum
- b) Mass

- c) Energy
- d) angular momentum
- 275. A rectangular block is 5 cm \times 5cm \times 10cm in size. The block is floating in water with 5 cm side vertical. If it floats with 10 cm side vertical, what change will occur in the level of water?
 - a) No change
 - b) It will rise
 - c) It will fall
 - d) It may rise or fall depending on the density of block
- 276. Two soap bubbles combine to form a single bubble. In this process, the change in volume and surface area are respectively *V* and *A*. If *p* is the atmospheric pressure, and *T* is the surface tension of the soap solution, the following relation is true.
 - a) 4pV + 3TA = 0
- b) 3pV 4TA = 0
- c) 4pV 3TA = 0
- d) 3pV + 4TA = 0
- 277. A cubical block of wooden edge I and a density ρ floats in water of density 2ρ . The lower surface of cube just touches the free end of a massless spring of force constant k fixed at the bottom of the vessel. The weight w put over the block so that it is completely immersed in water without wetting the weight is
 - a) $a(l \rho g + k)$
- b) $a(l^2 \rho g + k)$
- c) $a\left(\frac{l \rho g}{2} + 2k\right)$
- d) $a\left(l^2 \rho g + \frac{k}{2}\right)$

- 278. The flow of liquid is laminar or steam line is determined by
 - a) rate of flow of liquid

b) density of fluid

c) radius of the tube

- d) coefficient of viscosity of liquid
- 279. A rain drop of radius 1.5 mm, experiences a drag force $F = (2 \times 10^{-5} v)$ N, while falling through air from a height 2 km, with a velocity v. The terminal velocity of the rain drop will be nearly (use $g = 10 \text{ ms}^{-2}$)
 - a) 200 ms^{-1}
- b) 80 ms^{-1}
- c) 7 ms^{-1}
- d) 3 ms^{-1}

280. Figure shows the vertical cross section of a vessel filled with a liquid of density ρ . The normal thrust per unit area on the walls of the vessel at point P, as shown will be

a) $h \rho g$

- b) *H* ρ g
- c) $(H-h)\rho$ g
- d) $(H h)\rho g \cos \theta$
- 281. A vessel with water is placed on a weighing pan and it reads 0.8 gcc⁻¹ is sunk into the water with a pin of negligible volume as shown in figure keeping it sunk. The weighing pan will show a reading

- a) 600 g
- b) 632 g
- c) 642 g
- d) 640 g
- 282. A body floats in a liquid contained in a beaker. If the whole system falls under gravity, them the upthrust on the body due to liquids is
 - a) equal to the weight of the body in air
 - b) equal to the weight of the body in liquid
 - c) zero
 - d) equal to the weight of the immersed part of the body
- 283. A vessel contains oil (density 0.8 gcc^{-1}) over mercury (density 13.6 gcc^{-1}). A homogeneous sphere floats with half its volume immersed in mercury and the other half in oil. The density of the material of the sphere in gcc^{-1} is
 - a) 3

b) 6.4

c) 7.2

- d) 12.8
- 284. Two drops of equal radius coalesce to form a bigger drop. What is ratio of surface energy of bigger drop to smaller one?
 - a) $2^{1/2}$: 1
- b) 1:1

- c) $2^{1/3}$: 1
- d) None of the above
- 285. A mercury drop of radius 1.0 cm is sprayed in to 10^6 droplets of equal size. The energy expended in this process is (surface tension of mercury is equal to 32×10^{-2} Nm⁻¹)
 - a) 3.98×10^{-4} J
- b) 8.46×10^{-4} J
- c) 3.98×10^{-2} J
- d) 3.98×10^{-2} J
- 286. A cubical block of wood 10 cm on a side floats at the interface between oil and water with its lower surface horizontal and 4 cm below the interface. The density of oil is $0.6 gcm^{-3}$. The mass of block is

- a) 706 g
- b) 607 g
- c) 760 g
- d) 670 g
- 287. A mercury drop of radius 1 cm is broken into 10^6 droplets of equal size. The work done is $(S = 35 \times 10^{-2} \text{ Nm}^{-1})$
 - a) 4.35×10^{-2} J
- b) 4.35×10^{-3} J
- c) 4.35×10^{-6} J
- d) 4.35×10^{-8} J

288. If two soap bubbles of different radii are connected by a tube
a) air flows from the bigger bubble to the smaller bubble till the sizes become equal
b) air flows from bigger bubble to the smaller bubble till the sizes are interchanged
c) air flows from the smaller bubble to the bigger
d) there is no flow of air
289. A beaker containing water is balance on the pan of a common balance. A solid of spe

of specific gravity 1 and mass 5 g is tied to the arm of the balance and immersed in water contained in the beaker. The scale pan with the beaker

a) Goes down

b) Goes up

c) Remains unchanged

d) None of these

290. An aquarium tank is in the shape of a cube with one side a 4m tall glass wall. When the tank is half filled and the water is 2 m deep, the water exerts a force F on the wall. What force does the water exerts on the wall when the tank is full and the water is 4 m drop?

a) 1/2 F

b) F

c) 2 F

d) 4 F

291. Water flows through a vertical tube of variable cross-section. The area of cross-section at A and B are 6 and 3 mm² respectively. If 12 cc of water enters per second through A, find the pressure difference p_A – p_B (g = 10 ms⁻²) The separation between cross-section at A and B is 100 cm

a) 1.6×10^5 dyne cm⁻² b) 2.29×10^5 dyne cm⁻² c) 5.9×10^5 dyne cm⁻²

d) 3.9×10^5 dyne cm⁻²

292. The density of ice is 0.9 gcc^{-1} and that of sea water is 1.1 gcc^{-1} . An ice berg of volume V is floating in sea water. The fraction of ice berg above water level is

a) 1/11

b) 2/11

c) 3/11

d) 4/11

293. A ball of radius r and density ρ falls freely under gravity through a distance h before entering water. Velocity of ball does not change even on entering wate r. If viscosity of water is η , the value of h is given by

b) $\frac{2}{81}r^2\left(\frac{\rho-1}{n}\right)g$ c) $\frac{2}{81}r^4\left(\frac{\rho-1}{n}\right)^2g$ d) $\frac{2}{9}r^4\left(\frac{\rho-1}{\eta}\right)^2g$

294. A small tiny lead shot is gently dropped on the surface of a viscous liquid

a) The lead shot will fall with an acceleration equal to g at that place

b) The velocity of lead shot will decrease with time

c) The velocity of lead shot will increase continuously

d) The velocity of lead shot will reach steady value after sometime

295. Two very wide parallel glass plates are held vertically at a small separation r, and dipped in water of surface tension S. Some water climbs up in the gap between the plates. If p_0 is the atmospheric pressure, then the pressure of water just below the water surface in the region between the two plates is

a) $p_0 - \frac{2S}{r}$

b) $p_0 + \frac{2S}{r}$

c) $p_0 - \frac{4S}{r}$

296. At what speed, the velocity head of water is equal to pressure head of 40 cm of Hg?

a) 10.3 ms^{-1}

b) 2.8 ms^{-1}

c) 5.6 ms^{-1}

297. A parrot sitting on the floor of a wire cage which is being carried by a boy, starts flying. The boy will feel that the cage is now

a) Heavier

b) Lighter

c) Shows no change in weight

d) Lighter in the beginning and heavier later

298. What is the radius of the biggest aluminium coin of thickness t and density ρ , which will still be able to float on the water surface of surface tensionS?

299. Two communicating vessels contain mercury. The diameter of one vessel is n times larger than the diameter of the other. A column of water of height h is poured into the left vessel. The mercury level will rise in the right-hand vessel ($s = \text{relative density of mercury and } \rho = \text{density of water}$) by 300. To get the maximum flight, a ball must be thrown as d) None of these 301. By sucking through a straw, a student can reduce the pressure in his lungs to 750 mm of Hg (density = 13.6 g cm⁻³). Using the straw, he can drink water from a glass upto a maximum depth of a) 10 cm b) 75 cm c) 13.6 cm d) 1.36 cm 302. A water drop of 0.05 cm³ is squeezed between two glass plates and spreads into area of 40 cm². If the surface tension of water is 70 dyne cm⁻¹ then the normal force required to separate the glass plates from each other will be a) 22.5 N b) 45 N c) 90 N 303. A metal ball immersed in alcohol weighs W_1 at 0°C and W_2 at 59°C. The coefficient of cubical of cubical expansion of the metal is less than that of alcohol. Assuming that the density of the metal is large compared to that of alcohol, it can be shown that c) $W_1 = W_2$ a) $W_1 > W_2$ b) $W_1 < W_2$ d) $W_1 = 2W_2$ 304. The potential energy of molecule on the surface of a liquid compared to one inside the liquid is b) Lesser c) Equal 305. A concrete sphere of radius R has a cavity of radius r which is packed with sawdust. The specific gravities of concrete and sawdust are respectively 2.4 and 0.3 for this sphere to float with its entire volume submerged under water. Ratio of mass of concrete to mass of sawdust will be a) 8 b) 4 d) Zero 306. Water in river 20 m deep is flowing at a speed of 10 ms⁻¹. The shearing stress between the horizontal layers of water in the river in N m⁻² is (coefficient of viscosity of water = 10^{-3} SI units) d) $0.5 \times 10^{-3} \text{ Nm}^{-2}$ a) $1 \times 10^{-2} \text{ Nm}^{-2}$ b) $0.5 \times 10^{-2} \text{ Nm}^{-2}$ c) $1 \times 10^{-3} \text{ Nm}^{-2}$ 307. A liquid of density 800 kg m³ is filled in a tank open at the top. The pressure of the liquid at the bottom of the tank is 6.4 atm. The velocity of efflux through a hole at the bottom is $(1 \text{ atm} = 10^5 \text{ Nm}^{-2})$ b) 20 ms^{-1} a) 10 ms^{-1} 308. A spherical drop of water has radius 1 mm if surface tension of water is 70×10^{-3} Nm⁻¹, difference of pressure between inside and outside of the spherical drop is a) 35 Nm^{-2} b) 70 Nm^{-2} c) 140 Nm^{-2} d) Zero 309. When two soap bubbles of radius r_1 and r_2 ($r_2 > r_1$) coalesce, the radius of curvature of common surface is c) $\frac{r_2 - r_1}{r_1 r_2}$ b) $(r_2 + r_1)$ a) $(r_2 - r_1)$ 310. With rise in temperature, density of a given body changes according to one of the following relations a) $\rho = \rho_0 [1 + \gamma d\theta]$ b) $\rho = \rho_0 [1 - \gamma d\theta]$ c) $\rho = \rho_0 \gamma d\theta$ d) $\rho = \rho_0/\gamma d\theta$ 311. The rate of flow of liquid in a tube of radius r, length l, whose ends are maintained at a pressure difference P is $V = \frac{\pi Q P r^4}{\eta l}$ where η is coefficient of the viscosity and Q is

c) 16

d) $\frac{1}{16}$

a) 8

312. The working of venturim	eter is based on		
a) Torricelli's law		b) Pascal's law	
c) Bernoulli's theorem		d) Archimede's principle	
313. Velocity of water in a rive	er is		
a) Same everywhere		b) More in the middle and	d less near its banks
c) Less in the middle and	l more near its banks	d) Increase from one ban	k to other bank
314. A body weight 50 g in air	and 40 g in water. How mu	ich would it weigh in a liqui	id of specific gravity 1.5?
a) 30 g	b) 35 g	c) 65 g	d) 45 g
315. A spherical solid ball of v	olume <i>V</i> is made of a mater	rial of density $\rho_2(\rho_2 < \rho_1)$.	[Assume that the liquid
applies a viscous force or	n the ball that is proportion	al to the square of its speed	$ v, ie, F_{\text{viscous}} = -kv^2(k > 1)$
0)]. The terminal speed o			
Wa(a, < a,)	Vao	Vac	Va(0 < 0)
a) $\sqrt{\frac{Vg(\rho_2 < \rho_2)}{k}}$	b) $\frac{v g p_1}{v}$	c) $\sqrt{\frac{Vg\rho_1}{k}}$	d) $\frac{Vg(\rho_1 < \rho_2)}{k}$
V		V	ĸ
316. Water rises in a capillary	tube to a heighth. It will ris	se to a height more than h	
a) On the surface of sun			
b) In a life moving down	with an acceleration		
c) At the poles			
d) In a lift moving up wit			
317. A hollow cylinder of mas			
vertical position through	an angle $ heta$ and is left. The r		
a) $mg\cos\theta$	b) $mg \sin \theta$	c) $mg\left[\frac{1}{\cos\theta}-1\right]$	d) $mg\left[\frac{1}{m}+1\right]$
, ,	The Art of		
318. A beaker of radius 15 cm		face tension 0.75 Nm ⁻¹ . Fo	orce across an imaginary
diameter on the surface of) 0 005 N	1) 0 0 5 40 = 2 11
a) 0.075 N	b) $1.5 \times 10^{-2} \text{ N}$	c) 0.225 N	d) $2.25 \times 10^{-2} \text{ N}$
319. Construction of submarin		A STANIS	
	b) Bernoulli's theorem		d) Newton's laws
320. Two capillary tubes of sa			
_	What should be the length o	f a single tube that can repl	ace the two tubes so that
the rate of flow is same a		1 1	1
a) $l_1 + l_2$	b) $\frac{1}{l_1} + \frac{1}{l_2}$	c) $\frac{l_1 l_2}{l_1 l_2}$	$d)\frac{1}{l_1+l_2}$
321. The surface tension of so	_	he work done in blowing to	from a soap bubble of
surface area 40 cm ² , (in J		3 10 10-4	12.044.0=4
a) 1.2×10^{-4}	b) 2.4×10^{-4}	c) 12×10^{-4}	d) 24×10^{-4}
322. Water is flowing in a pipe			nen enters in to a pipe of
	ity of water in the other pip		n o =1
a) 3 ms ⁻¹	b) 6 ms ⁻¹	c) 12 ms ⁻¹	d) 8 ms ⁻¹
323. There is a small bubble a	t one end and bigger bubble	e at other end of a rod. Wha	it will happen?
$\begin{pmatrix} A & & & \\ & & & \\ & & & \end{pmatrix}$ B			
a) Smaller will grow unti	l they collapse	b) Bigger will grow until t	they collapse
c) Remain in equilibrium		d) None of the above	J I
324. When a number of small		=	
a) energy is absorbed	•	b) energy is liberated	
c) energy is neither liber	ated nor absorbed	d) process is independent	t of energy
325. According to Bernoulli's			

			Gplus Educatio
338. A solid of dens	sity D is floating in a liquid of dens	sity d . If v is the volume α	of solid submerged in the liquid
and V is the to	tal volume of the solid, then v/V :	is equal to	
a) $\frac{d}{P}$	b) $\frac{D}{d}$	c) $\frac{D}{(D+d)}$	d) $\frac{D+d}{D}$
339. Two solid sph	eres of same metal but of mass M	and 8M fall simultaneou	ısly on a viscous liquid and their
terminal velo	cities are v and nv , then value of n	is	
a) 16	b) 8	c) 4	d) 2
340. A body of den mass of the bo	sity d_1 is counterpoised by Mg of ody is	weights of density d_2 in	air of density d . Then the true
a) <i>M</i>	b) $M\left(1-\frac{d}{d_2}\right)$	c) $M\left(1-\frac{d}{d_1}\right)$	d) $\frac{M(1-d/d_2)}{(1-d/d_1)}$
341. A siphon in us	e is demonstrated in the following	g figure. The density of tl	he liquid flowing in siphon is
1.5~gm/cc. Th	e pressure difference between the	e point P and S will be	
10 c	20 cm		
a) 10 ⁵ N/m			
b) $2 \times 10^5 N/r$	n		
c) Zero			
d) Infinity	-	-	
other. If the di	s made between two straight para istance between the wires is incre ater is 72 dyne cm ^{–1}	_	
a) 288 erg	b) 72 erg	c) 144 erg	d) 216 erg
343. There is a hole	e of area A at the bottom of a cylin	drical vessel. Water is fil	lled upto a height h and water
	sec. If water is filled to a height 4		
a) 2 <i>t</i>	b) 4 t	c) 16 t	d) 7/4 t
_	s of two immiscible liquids of den e made at depth h/2 and 3 h/2 fr		_

vo velocities of efflux at these two holes, then v_1/v_2 is

345. A cylinder of height 20 m is completely filled with water. The velocity of efflux of water (in ms^{-1}) through a hole on the side wall of the cylinder near its bottom, is

a) 10 b) 20 c) 25.5 d) 5

346. A wooden piece can float both in mercury (of density 13.6 gm/cc) and in water (of density 1 gm/cc). The ratio of mass of mercury displaced to the mass of water displaced is $% \left\{ 1,2,\ldots ,n\right\}$

b) 13.6 c) $\frac{1}{13.6}$ d) $\frac{12.6}{13.6}$ a) 1

347. If W be the weight of a body of density ρ in vacuum then its apparent weight in air of density σ is

a) $\frac{W\rho}{\sigma}$ d) $W\left(1-\frac{\sigma}{\rho}\right)$ b) $W\left(\frac{\rho}{\sigma}-1\right)$

348. When a body falls in air, the resistance of air depends to a great extent on the shape of the body. 3 different shapes are given. Identify the combination of air resistances which truly represents the physical situation? (The cross-sectional areas are the same)

a) 1<2<3

b) 2<3<1

c) 3<2<1

d) 3<1<2

349. A square plate of $0.1\ m$ side moves parallel to a second plate with a velocity of $0.1\ m/s$, both plates being immersed in water. If the viscous force is $0.002\ N$ and the coefficient of viscosity is 0.01 poise, distance between the plates in m is

a) 0.1

b) 0.05

c) 0.005

d) 0.0005

350. A body floats in water with 40% of its volume outside water. When the same body floats in an oil, 60% of its volume remains outside oil. The relative density of oil is

a) 0.9

b) 1.0

c) 1.2

d) 1.5

351. A bird is sitting in a large closed cage which is placed on a spring balance. It records a weight of 5N. The bird of mass 0.5 kg files upward in the cage with an acceleration of 2 ms⁻². The spring balance will now record a weight of

a) 4 N

b) 5 N

c) 6 N

d) 7 N

352. Water rises to a height of 10 cm in a capillary tube and mercury falls to a depth of 3.42 cm in the same capillary tube. If the density of mercury and water are 135° and 0° respectively, the ratio of surface tension of water and mercury is

a) 1:0.15

b) 1:3

c) 1:65

d) 1.5:1

353. Three capillaries of length L, L/2 and L/3 are connected in series. Their radii are r, r/2 and r/3 respectively. Then, if stream-line flow is to be maintained and the pressure across first capillary is p, then the

a) pressure difference across the end of second capillary is 8p

b) pressure difference across the third capillary is 43p

c) pressure difference across the end of second capillary is 16p

d) pressure difference across the third capillary is 56p

354. The top surface of an incompressible liquid is open to the atmosphere. The pressure at a depth P_1 . How does the pressure P_2 at depth P_2 at depth P_3 ?

a) $P_2 > 2P_1$

b) $P_2 = 2P_1$

c) $P_2 < 2P_1$

d) $P_2 = P_1$

355. Surface tension of a soap solution is able of 2.0 cm diameter will be

a) $7.6 \times 10^{-6} \pi$ [

b) $15.2 \times 10^{-6} \, \pi$ [

c) $1.9 \times 10^{-6} \, \pi$ J

d) $1 \times 10^{-4} \, \pi$ J

356. The U-tube has a uniform cross-section as shown in figure. A liquid is filled in the two arms upto heights h_1 and h_2 and then the liquid is allowed to move. Neglect viscosity and surface tension. When the level equalize in the two arms, the liquid will

a) Be at rest

b) Be moving with an acceleration of $g\left(\frac{h_1-h_2}{h_1+h_2+2}\right)$

			Gpius Education
	S. D	_	
	c) Be moving with a velocity of $(h_1 - h_2) \sqrt{\frac{g}{2(h_1 + h_2 + 2)}}$	-)	
	d) Exert a net force to the right on the cube		
357	. An ice block floats in a liquid whose density is less th	nan water. A part of block is	outside the liquid. When
	whole of ice has melted, the liquid level will	•	•
	a) Rise	b) Go down	
	c) Remain same	d) First rise then go down	l
358	Two different liquids are flowing in two tubes of equ		
	liquids is 52:49 and the ratio of their densities is 13:		
	a) 4:49 b) 49:4	c) 2:7	d) 7:2
359	. A wooden black, with a coin placed on its top, flats in	n water as shown in the figu	re. The distance h and l are
	shown there. After sometime, the coin falls into the v	_	
	Coin		
	T		
	h		
	a) both <i>l</i> and <i>h</i> increace		
	b) both <i>l</i> and <i>h</i> decrese		
	c) <i>l</i> decrease and <i>h</i> increase		
	d) l increase and h decrease		
360	A streamlined body falls through air from a height h	on the surface of a liquid. I	f d and $D(D > d)$
500	represents the densities of the material of the body a		
	body will be instantaneously at rest, is	ma nquia respectively, the	if the time after which the
			<u> </u>
	a) $\frac{2h}{g}$ b) $\frac{2h}{g} \cdot \frac{D}{d}$	c) $\frac{ 2h }{-} \cdot \frac{d}{-}$	d) $\sqrt{\frac{2h}{g}} \left(\frac{d}{D-d} \right)$
	\sqrt{g}	\sqrt{g} D	$\int g (D-d)$
361	. The terminal velocity $oldsymbol{v}$ of a spherical ball of lead of $oldsymbol{r}$	radius R falling through a vi	iscous liquid varies with R
	such that		
	a) $\frac{v}{R}$ = constant b) vR = constant	c) $v = constant$	d) $\frac{v}{R^2}$ = constant
362	Consider the following equation of Berouilli's theore		А
	$P + \frac{1}{2}\rho V^2 + \rho gh = K \text{ (constant)}$		
	2	the Calleraine	
	The dimensions of K/P are same as that of which of	=	d) Vicaccity
262	a) Thrust b) Pressure	c) Angle	d) Viscosity
303	The coefficient of viscosity for hot air is		
	a) Greater than the coefficient of viscosity of cold air		
	b) Smaller than the coefficient of viscosity for cold air	I.	
	c) Same as the coefficient of viscosity for cold aird) Increases or decrease depending on the external	nnogguno	
261		•	A liquid flows through
304	. Two capillaries of same length and radii in the ratio		
	them in streamlined condition. If the pressure across water, the pressure difference across first capillary of		ne combination is 1 m of
	a) $9.4 m$ b) $4.9 m$	c) 0.49 m	d) 0.94 m
265			
202	. Let W be the work done, when a bubble of volume V required to be done to form a bubble of volume 2 V ?	_	udon, How much work is
	a) W b) $2W$	c) 2 ^{1/3} W	d) 4 ^{1/3} W
366	B) 2W . Water flows through a frictionless tube with a varyir	•	•
200	points along the <i>y</i> -axis is represented by	ig ci uss-section as shown i	ii rig (i). riessule p at
	points along the y-axis is represented by		

- 367. Water rises to a height of 16.3 cm in a capillary of height 18 cm above the water level. If the tube is cut at a height of 12 cm in the capillary tube,
 - a) Water will come as a fountain from the capillary tube
 - b) Water will stay at a height of 12 cm in the capillary tube
 - c) The height of water in the capillary tube will be 10.3 cm
 - d) Water height flow down the sides of the capillary tube
- 368. A wooden block of volume $1000 \ cm^3$ is suspended from a spring balance. It weighs $12 \ N$ in air. It is suspended in water such that half of the block is below the surface of water. The reading of the spring balance is
 - a) 10 N

b) 9 N

c) 8 N

- d) 7 N
- 369. A cork is submerged in water by a spring attached to the bottom of a bowl. When the bowl is kept in an elevator moving with acceleration downwards, the length of spring
 - a) Increases
- b) Decreases
- c) Remains unchanged
- d) None of these
- 370. A liquid does not wet the solid surface if the angle of contact is
 - a) Zero

- b) equal to 45°
- c) equal to 90°
- d) greater than 90°
- 371. A cylindrical vessel of height 500 mm has an orifice (small hole) at its bottom. The orifice is initially closed and water is filled in it up height H. Now the top is completely sealed with a cap and the orifice at the bottom is opened. Some water comes out from the orifice and the water level in the vessel becomes steady with height of water column being 200 mm. Find the fall in height (in mm) of water level due to opening of the orifice

(Take atmospheric pressure = $1.0 \times 10^5 N/m^2$, density of water = $1000 \, kg/m^3$ and $g = 10 \, m/s^2$. Neglect any effect of surface tension)

- a) 5 mm
- b) 6 mm
- c) 2 mm
- d) 1 mm
- 372. A candle of diameter d is floating on a liquid in a cylindrical container of diameter D(D >> d) as shown in figure. If it is burning at the rate of 2cm/hour then the top of the candle will

a) Remain at the same height

b) Fall at the rate of 1 cm/hour

c) Fall at the rate of 2 *cm/hour*

- d) Go up the rate of 1 cm/hour
- 373. A tank 5m high is half filled with water and then is filled to the top with oil of density0.85 gcm⁻³. The pressure at the bottom of the tank, due to these liquids is
 - a) $1.85 \,\mathrm{g}\,\mathrm{dynecm}^{-3}$
- b) $89.25 \, \text{g dynecm}^{-3}$
- c) 462.5 g dynecm⁻³
- d) $500 \text{ g dynecm}^{-3}$
- 374. The terminal speed of a sphere of gold (density = 19.5 kg m^{-3}) is 0.2 ms^{-1} in a viscous liquid (density = 1.5 kg m^{-3}). Then the terminal speed of a sphere of silver (density = 10.5 kg m^{-3}) of the same size in the same liquid is
 - a) 0.1 ms^{-1}
- b) 1.133 ms^{-1}
- c) 0.4 ms^{-1}
- d) 0.2 ms^{-1}

375. From the adjacent figure, the correct observation is Water a) the pressure on the bottom of the tank A is greater than at the bottom of B b) the pressure on the bottom of the tank A smaller than at the bottom of B c) the pressure depends on the shape of the container d) the pressure on the bottom of *A* and *B* is the same 376. A 20 cm long capillary tube is dipped in water. The water rises upto 8 cm. If the entire arrangement is put in a freely falling elevator, the length of water column in the capillary tube will be b) 10 cm a) 8 cm d) 20 cm 377. 10 cm long wire is placed horizontally on the surface of water and is gently pulled up with a force of 2 \times 10^{-2} N to keep the wire in equilibrium. The surface tension of water in Nm⁻¹ is a) 0.002 b) 0.001 d) 0.1 378. A liquid flows through a pipe of non-uniform cross-section. If A_1 and A_2 are the cross-sectional area of the pipe at two points, the ratio of velocities of the liquid at these points will be 379. Ice pieces are floating in beaker A containing water also in a beaker B containing miscible liquid of specific gravity 1.2. When ice melts, the level of a) water increases in Ab) water decreases in A c) liquid in B decreases d) liquid in *B* increases 380. A liquid is flowing in a horizontal uniform capillary tube under a constant pressure difference P. The value of pressure for which the rate of flow of the liquid is doubled when the radius and length both are doubled is b) $\frac{3P}{4}$ c) $\frac{P}{2}$ a) *P* 381. Two liquid drops have diameters of 1 cm and 1.5 cm. The ratio of excess of pressure inside them is a) 1:1 b) 5:3 c) 2:3 d) 3:2 382. The rate of steady volume flow of water through a capillary tube of length l and radius r, under a pressure difference of p si V. This tube is connected with another tube of the same length but half the radius, in series. Then the rate of steady volume flow through them is (The pressure difference across the combination is p) c) $\frac{16V}{17}$ 383. Aerofils are so designed that the speed of air a) On top side is more than on lower side b) On top side is less than on lower side c) Is same on both sides d) Is turbulent 384. Two capillaries of length L and 2L and of radii R and 2R respectively are connected in series. The net rate of flow of fluid through them will be (Given, rate of the flow through single capillary, $X = \pi p R^4 / 8\eta L$) a) $\frac{8}{9}X$

385. A body of density ρ is dropped from rest at a height h into a lake of density σ , where $\sigma > \rho$. Neglecting all dissipative forces, calculate the maximum depth to which the body sinks before returning to float on the surface

b) $\frac{h\rho}{\bar{}}$

386. An application of Bernoulli's equation for fluid flow is four in

to form a single drop big size, then the terminal	
surface tension of water is T and the atmospheric	c) $10~\rm cm s^{-1}$ d) $40~\rm cm s^{-1}$ ius R as shown in the figure. The density of water is ρ , the ic pressure is P_0 . Consider a vertical section $ABCD$ of the The force on water on one side of this section by water or
$ \begin{array}{c} 2R \stackrel{\bullet}{\triangleright} \\ B \\ \downarrow \\ D \end{array} $	
a) $ 2P_0Rh + \pi R^2 \rho gh - 2RT $	b) $ 2P_0Rh + R\rho gh^2 - 2RT $
c) $ P_0\pi R^2 + R\rho gh^2 - 2RT $	d) $ P_0\pi R^2 + R\rho gh^2 + 2RT $
389. The relative velocity of two consecutive layers is is 0.1 <i>cm</i> , then the velocity gradient will be	is 8 cm/s . If the perpendicular distance between the layers
a) $8sec^{-1}$ b) $80 sec^{-1}$	c) $0.8 \ sec^{-1}$ d) $0.08 \ sec^{-1}$
390. On which of the following, the terminal velocity	
_	d c) Density of the ball d) Density of the liquid
	fluid of viscosity η with a velocity v . The retarding viscous
force acting on the spherical ball is	
a) directly proportional to R but inversely propo	ortional tov
b) directly proportional to both radius R and vel	
c) inversely proportional to both radius R and v	
d) inversely proportional to R but directly propo	ortional to velocity v
392. A liquid flows in a tube from left to right as show	vn in figure A_1 and A_2 are the cross-sections of the
	A_1 A_2
	$V_1 \longrightarrow V_2 $
portions of the tube as shown. Then the ratio of	sneeds v_1/v_2 will be
a) A_1/A_2 b) A_2/A_1	c) $\sqrt{A_2}/\sqrt{A_1}$ d) $\sqrt{A_1}/\sqrt{A_2}$
	nes when it rises from bottom to top of a water tank where
	pressure is 10 m of water, the depth of the water in the
tank is	messure is 10 in or water, the depth of the water in the
a) 30 m b) 40 m	c) 70 m d) 80 m
	ensity of sea water is 1.03 g cc^{-1} and that ice is 0.92 g cc^{-1}
The fraction of total volume of iceberg above the	
a) 1.8% b) 3%	c) 8% d) 11%
	t between a large surface area and a surface area of 0.1 m ²
	I, so that it can move with a velocity of 1 ms $^{-1}$? (Given that
coefficient of viscosity = $0.07 \text{ kg m}^{-1} \text{ s}^{-1}$)	, so that it can move with a velocity of 1 ms . (diven tha
a) 70 N b) 7 N	c) 700 N d) 0.70 N
	blume rate L . The water travels vertically upwards through
	orizontally at speed ν . The pipe and nozzle have uniform

cross-section throughout. The force exerted by water on the corner of the hydrant is

a) Zero

b) pvL

c) $\sqrt{2} pvL$

d) 2 pvL

397. A cylinder of mass m and density ρ hanging from a string is lowered into a vessel of cross-sectional area A containing a liquid of density $\sigma(<\rho)$ until it is fully immersed. The increase in pressure at the bottom of the vessel is

a) Zero

b) $\frac{mg}{4}$

c) $\frac{mg \rho}{\sigma A}$

d) $\frac{m \sigma g}{\rho A}$

398. In a streamline flow if the gravitational head ish. The kinetic and pressure heads are

a) v^2/g and p/ρ

b) $v^2/2g$ and $p/\rho g$

c) $v^2/2g$ and p/ρ

d) $v^2/2$ and p/ρ g

399. A soap film is made by dipping a circular frame of radius b in soap solution. A bubble is formed by blowing air with speed v in the form of cylinder. The radius of the bubble formed $R \gg b$ so that the air is incident normally on the surface of bubble. Air stops after striking surface of soap bubble. Density of air is ρ . The radius R of the bubble when the soap bubble separates from the ring is (surface tension of liquid is S)

a) $\frac{S}{\rho v^2}$

b) $\frac{4 S}{\rho v^2}$

c) $\frac{Sb}{\rho v}$

d) $\frac{4 Sb}{\rho v^2}$

400. A large tank filled with water to a height h is to be emptied through a small hole at the bottom. The ratio of times taken for the level of water to fall from h to h/2 and h/2 to zero is

a) √2

b) $\frac{1}{\sqrt{2}}$

c) $\sqrt{2} - 1$

 $d)\frac{1}{\sqrt{2-1}}$

401. A thread is tied slightly loose to a wire frame as in figure and the frame is dipped into a soap solution and taken out. The frame is completely covered with the film. When the portion A is punctured with a pin, the thread

GPLUS EDUCATION

- a) Becomes concave towards A
- b) Becomes convex towards A
- c) Either (a) or (b) depending on the size of A with respect to B
- d) Remain in the initial position

 $402. \ In \ stream \ line \ flow \ of \ liquid, the total energy \ of \ liquid \ is \ constant \ at$

a) all points

b) inner points

c) outer points

d) None of these

403. Two capillary of length L and 2L and of radii R and 2R are connected in series. The net rate of flow of fluid through them will be (given rate of the flow through single capillary, $X = \frac{\pi p R^4}{8nL}$)

a) $\frac{8}{9}X$

b) $\frac{9}{8}X$

c) $\frac{5}{7}X$

d) $\frac{7}{5}X$

404. Water is moving with a speed of $5.18~\rm ms^{-1}$ through a pipe with a cross-sectional area of $4.20~\rm cm^2$. The water gradually descend $9.66~\rm m$ as the pipe increase in area to $7.60~\rm cm^2$. The speed of flow at the lower level is

a) 3.0 ms^{-1}

b) 5.7 ms^{-1}

c) 3.82 ms⁻¹

d) 2.86 ms^{-1}

405. A viscous fluid is flowing through a cylindrical tube. The velocity distribution of the fluid is best represented by the diagram

c) Length of the capillary tube

- d) Inner radius of the capillary tube
- 414. A piece of ice is floating in a jar containing water. When the ice melts, then the level of water
 - a) rises

b) Falls

- c) remains unchanged
- d) rises or falls
- 415. A container of height 10 m which is open at the top, has water to its full height. Two small openings are made on the walls of the container one exactly at the middle and the other at the bottom. The ratio of the velocities with which water comes out from the middle and the bottom region respectively is
 - a) 2

c) $\sqrt{2}$